CORRECTION TO ON ISOSPECTRAL LOCALLY SYMMETRIC SPACES AND A THEOREM OF VON NEUMANN

R. J. SPATZIER

I am very grateful to A. Reid for alerting me to an error in [S]. Lemma 4.1 in [S] is false in general. This invalidates the proof that the lattices Γ_1 and Γ_2 constructed there are not isomorphic. Here we will show that these two lattices indeed are not isomorphic. For our notations we refer to [S].

Suppose to the contrary that $\phi \colon \Gamma_1 \to \Gamma_2$ is an isomorphism. Since **G** is simple and not locally isomorphic to $SL(2, \mathbf{R})$, ϕ extends to an automorphism of **G** by Mostow's rigidity theorem. Let Φ be the induced automorphism of the Lie algebra of **G**. Since $\operatorname{Ad} \phi(g) = \Phi \operatorname{Ad}(g)\Phi^{-1}$ we see that tr $\operatorname{Ad} \phi(g) = \operatorname{tr} \operatorname{Ad} g$. In the construction of Γ_1 and Γ_2 we may and will suppose that p > n where n is the dimension of **G**.

In the Heisenberg group H_2 set

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{and} \qquad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then c = [a, b]. Pick lifts \tilde{a} and \tilde{b} of a and b in Γ_2 and set $\tilde{c} = [\tilde{a}, \tilde{b}]$. Then \tilde{c} is a lift of c to Γ_2 . As H_1 is abelian we see that $\phi^{-1}(\tilde{c}) \in [\Gamma_1, \Gamma_1] \subset C$. Hence tr $Ad(\tilde{c}) = tr Ad \phi^{-1}(\tilde{c}) \equiv n \mod p$. On the other hand, recall from the proof of Lemma 3.2 that \mathcal{A}_{27} and thus H_2 are embedded into $G'_{ad}(F_p)$ by permuting coordinates. It follows that Ad(c) permutes the root spaces and is hence represented by a permutation matrix of 0's and 1's (with respect to a Chevalley basis of the Lie algebra). Since $Ad(c) \neq 1$ and p > n, it follows that tr $Ad(c) \not\equiv n \mod p$. Since tr $Ad(c) \equiv tr Ad(\tilde{c}) \equiv n \mod p$, this is a contradiction.

REFERENCES

[S] R. J. Spatzier, On isospectral locally symmetric spaces and a theorem of von Neumann, Duke Mathematical J. 59 (1989), 289-294.