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A VARIATIONAL APPROACH TO THE EXISTENCE
OF COMPLETE EMBEDDED MINIMAL SURFACES

D. HOFFMAN AND W. H. MEEKS, III

In [11], we established the existence of a sequence of properly embedded
minimal surfaces, Mk, of genus k, with finite total curvature and three ends,
k > 1. The surface M in this sequence is the example of Costa [6], [9]. Later,
other examples of properly embedded minimal surfaces of finite total curvature
were shown to exist using similar analytic methods [4], [10].
In spite of the power of these analytic techniques, they have not been

successful in answering basic theoretical and qualitative questions about embed-
ded minimal surfaces of finite total curvature with a large number of ends. The
present paper is an attempt to address such questions and, at the same time, to
develop a general variational approach to proving the existence of embedded
minimal surfaces of finite total curvature in R 3.

Section 1 contains technical results on the existence of embedded compact
minimal surfaces with large symmetry. In Section 2, we provide a construction
for the surfaces Mk; they arise from a generating sequence of compact minimal
surfaces by the blowing up of a singularity in the limit. Actually, we construct by
this method three-ended, properly embedded minimal surfaces of finite topology
with a large symmetry group. It then follows from Statement 8 of the Main
Theorem, proved in [11] and stated below, that these surfaces must be the
surfaces Mk. This alternative construction suggests that there should be other,
less symmetric, examples.

In [3] and [5], we apply the results of this paper to construct new examples of
periodic minimal surfaces that have an infinite number of annular ends.

Recently Pitts and Rubenstein [20] have also given a variational construction
of complete minimal surfaces { Nk ) of genus k with three ends. Their construc-
tion is similar in spirit to our variational approach. Their examples have the same
symmetry as the examples {Mk } and hence, by the Main Theorem below, are the
same surfaces.
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