## ON THE SURJECTIVITY OF THE WAHL MAP

## CIRO CILIBERTO, JOE HARRIS, AND RICK MIRANDA

## **CONTENTS**

| 1.           | Introduction                                                                        | . 829 |
|--------------|-------------------------------------------------------------------------------------|-------|
| 2. ′         | The graph curve $X_{n,p}$                                                           | 834   |
| 3.           | Sections of the dualizing sheaf on $X_{n,p}$                                        | 834   |
| <b>4</b> . ′ | The Wahl map                                                                        | .837  |
| 5. ′         | The surjectivity modulo torsion                                                     | .838  |
| 6. ′         | The torsion part                                                                    | . 843 |
| 7. ′         | The cases of genera $\neq 13 \dots \dots \dots \dots \dots \dots \dots \dots \dots$ | . 850 |
| 8. ′         | The genus 13 case and the main theorem                                              | . 851 |
| Аp           | pendix: Surjectivity of the map $W_L$ for L of large degree                         | . 856 |

1. Introduction. In this paper we will prove a theorem (stated at the end of this introduction) describing the rank of the Wahl map of a general curve of large genus. We begin here by describing this map and some aspects of its significance.

To begin with, consider a smooth curve C, a line bundle L on C, and a linear system  $V \subseteq H^0(C, L)$ . Given a section  $\sigma \in V$  of L, we can try to define a "differential"  $d\sigma$  of  $\sigma$ , which will be a section of the tensor product  $K \otimes L$  of the canonical bundle  $K = K_C$  with L, by choosing a trivializing section  $\sigma_0$  of C, writing  $\sigma$  locally as

$$\sigma(z) = f(z) \cdot \sigma_0$$

and setting

$$d\sigma = df \otimes \sigma_0$$
.

This clearly doesn't work: if  $\tau_0$  is another trivializing section on L, with  $\sigma_0(z) = g(z) \cdot \tau_0$ , we would have

$$\sigma(z) = f(z) \cdot g(z) \cdot \tau_0,$$

so that the "differential" would be

$$d\sigma = (f \cdot dg + g \cdot df) \otimes \tau_0 = df \otimes \sigma_0 + f \cdot dg \otimes \tau_0$$

i.e., it would differ from the earlier differential  $d\sigma$  by the addition of  $f \cdot dg \otimes \tau_0$ . The expression  $d\sigma$  is thus only well defined at the points where  $\sigma$  is zero!

Received October 31, 1987. Revision received March 6, 1988. First author supported by CNR and MPI.