SPECIAL K-TYPES, TEMPERED CHARACTERS AND THE BEILINSON–BERNSTEIN REALIZATION

JEN-TSEH CHANG

§1. Introduction. Let \mathscr{G} be a connected linear semisimple Lie group (the precise assumptions on \mathscr{G} will be described in §2) and \mathscr{K} be a maximal compact subgroup of \mathcal{G} . As an invariant attached to representations of \mathcal{G} , Vogan introduced in [25] a notion of "lowest" *X*-types and used it to give a classification of irreducible admissible representations for \mathscr{G} . In this theory, roughly speaking, an irreducible representation is specified in terms of the lowest *X*-types and is realized as some subquotient of a certain induced representation. In contrast to Langlands-Knapp-Zuckerman's classification ([16], [17]), Vogan's theory is technically more algebraic. Using the language of \mathcal{D} -module, Beilinson and Bernstein introduced in [3] a geometric theory for general modules over g, the complexified Lie algebra of G, in which one can "localize" a g-module to a certain sheaf of \mathcal{D} -module on the flag variety X associated to g. A g-module can thus be realized as the space of global sections of a certain \mathcal{D} -module on X. From the geometric point of view, this construction is most natural and most simple. In this paper, we study *X*-types of an arbitrary induced standard Harish-Chandra module (i.e., $(\mathfrak{g}, \mathscr{K})$ -module) via Beilinson-Bernstein's construction. Our goal is to search for certain "special" *K*-types from the geometric point of view and to put Vogan's classification into the more geometric context.

To be more precise, we fix a complexification $K \subseteq G$ for the pair $\mathscr{K} \subseteq \mathscr{G}$. K acts on the flag variety X. In the Beilinson-Bernstein theory, a quasisimple Harish-Chandra module is localized to a $(\mathscr{D}_{\lambda}, K)$ -module on X for some dominant linear form λ on the Cartan subalgebra \mathfrak{h} of \mathfrak{g} ; here \mathscr{D}_{λ} is the twisted sheaf of differential operators (t.d.o. for short) on X parametrized by λ . On the other hand, to each K-orbit Q and a λ -compatible connection τ on Q, there is an associated standard module $\mathscr{I}_{Q,\tau,\lambda}$ which contains a unique irreducible submodule denoted by $\mathscr{L}_{Q,\tau,\lambda}$. We have $\Gamma(\mathscr{L}_{Q,\tau,\lambda}) \subset \Gamma(\mathscr{I}_{Q,\tau,\lambda})$. The nontrivial $\Gamma(\mathscr{L}_{Q,\tau,\lambda})$'s exhaust all the irreducible Harish-Chandra modules. With these, we can phrase our goal more precisely as: From a geometric point of view, find a certain set of "special" K-types in $\Gamma(\mathscr{I}_{Q,\tau,\lambda})$ which will "locate" the irreducible submodule $\Gamma(\mathscr{L}_{Q,\tau,\lambda})$ (when nontrivial), and find explicit formulae for these K-types. Of course, these special K-types will be nothing but the lowest K-types in Vogan's sense.

Our results can be best explained by our methods. In the first part, we establish the following:

(a) A criterion for $\Gamma(\mathscr{L}_{Q,\tau,\lambda})$ to be nontrivial (Theorem 3.15; this is an unpublished result of Beilinson and Bernstein).

Received September 15, 1986. Revision received March 26, 1987.