SELBERG TRACE FORMULAE, PSEUDODIFFERENTIAL OPERATORS, AND GEODESIC PERIODS OF AUTOMORPHIC FORMS

STEVEN ZELDITCH

Let X_{Γ} be a compact hyperbolic surface: $X_{\Gamma} = \Gamma \setminus \mathfrak{h}$, with \mathfrak{h} the upper 1/2 plane and Γ a discrete co-compact subgroup of $PSL_2(\mathbb{R})$. Associated to X_{Γ} are two different kinds of objects:

(a) spectral data of its Laplacian Δ : numerically, the spectrum spec_{Δ}(X) of eigenvalues { λ_k }; "geometrically," the normalized eigenfunctions { u_k } of Δ ;

(b) geodesic flow G^{t} : numerically, the period spectrum $\{L_{\gamma}\}$ of lengths of closed geodesics; "geometrically," the closed geodesics $\{\gamma\}$ and the ergodic properties of G^{t} .

Selberg's well-known trace formula provides a link between the numerical data of (a) and (b). To state the formula, let $R = \sqrt{-(\Delta + \frac{1}{4})}$ and let spec $(R) = \{r_k\}$. Then, for suitable f (including $f \in C_0^{\infty}(\mathbb{R})$), one has the

Selberg trace formula (STF):

$$\operatorname{Tr} \hat{f}(R) = \sum_{k} \hat{f}(r_{k}) = \frac{A}{4\pi} \int_{-\infty}^{\infty} \hat{f}(r) r \tanh \pi r \, dr + \sum_{\{\gamma\}} \frac{L_{\gamma_{0}} f(L_{\gamma})}{\operatorname{sh} L_{\gamma/2}},$$

where γ_0 is the primitive closed geodesic corresponding to γ (once around) and A is the area.

By choosing f suitably, one can deduce precise asymptotic formulae for the spectral function $N(\lambda) = \sum_{\sqrt{\lambda_k} \leq \lambda} 1$ and the length spectral function $\mathscr{V}(T) = \sum_{L_n \leq T} L_{\gamma}$. (See, e.g., [H] for these and many other applications of STF.)

Our purpose in the present paper is to generalize the trace formula so as to provide a link between the geometric data of (a) and (b). By geometric we mean the following: A closed geodesic γ , as a curve in the unit tangent bundle $S^*(X_{\Gamma}) = \Gamma \setminus PSL_2(\mathbb{R})$, defines a probability measure $d\mu_{\gamma}$ on $C(S^*X_{\Gamma})$: $\int a d\mu_{\gamma}$ $= (L_{\gamma})^{-1} \int_{\gamma} a$. Less obviously, an eigenfunction u_k of Δ defines a "pseudomeasure" dU_k on $C(S^*X_{\Gamma})$ (cf. [Z1]). The $\{dU_k\}$ are defined via pseudodifferential operator (ψ DO) theory. A calculus of ψ DO's on $L^2(X_{\Gamma})$ is an assignment $a \to Op(a)$ of bounded operators to symbols $a \in C^{\infty}(S^*X_{\Gamma})$, thought of as homogeneous functions of order 0 in $C^{\infty}(T^*X_{\Gamma})$ (for purposes of trace formulae

Received June 30, 1986.