THE BERGMAN SPACE, THE BLOCH SPACE, AND COMMUTATORS OF MULTIPLICATION OPERATORS

SHELDON AXLER

1. Introduction. Let D denote the open unit disk in the complex plane C, and let A denote the usual area measure on C. For $1 \le p < \infty$, the Bergman space L_a^p is the Banach space of analytic functions $g: D \to C$ such that

$$||g||_{p} = \left[\int_{\mathsf{D}} |g(z)|^{p} dA(z)/\pi\right]^{1/p} < \infty.$$

When p = 2, we obtain the Hilbert space L_a^2 with inner product given by

$$\langle f, g \rangle = \int_{\mathsf{D}} f(z) \overline{g}(z) dA(z) / \pi.$$

As usual, $H^{\infty}(D)$ denotes the set of bounded analytic functions on D. For $f \in H^{\infty}(D)$, the multiplication operator $T_f: L_a^2 \to L_a^2$ is defined by $T_f(g) = fg$. This paper answers the question discussed in [3] of characterizing the functions $f \in H^{\infty}(D)$ such that $T_f^*T_f - T_fT_f^*$ is a compact operator. I worked on this problem because the multiplication operators on L_a^2 furnish basic examples of subnormal operators, and it is desirable to know as much as possible about them. The theory developed by Brown, Douglas, and Fillmore [6] can be applied to those Hilbert space operators T such that $T^*T - TT^*$ is a compact operator (such operators are called essentially normal).

Let P denote the orthogonal projection of $L^2(\mathbf{D}, dA/\pi)$ onto L_a^2 , so (1 - P) is the orthogonal projection of $L^2(\mathbf{D}, dA/\pi)$ onto $(L_a^2)^{\perp}$. For $f \in L^{\infty}(\mathbf{D}, dA/\pi)$, the Hankel operator $H_f: L_a^2 \to (L_a^2)^{\perp}$ is defined by $H_f(g) = (1 - P)(fg)$. An easy calculation (Proposition 3) shows that

$$T_f^* T_f - T_f T_f^* = H_f^* H_{\bar{f}}$$

for all $f \in H^{\infty}(D)$. Thus for $f \in H^{\infty}(D)$, the commutator $T_{f}^{*}T_{f} - T_{f}T_{f}^{*}$ is a compact operator if and only if $H_{\bar{f}}$ is a compact operator; the results in this paper will be stated in terms of $H_{\bar{f}}$ rather than in terms of $T_{f}^{*}T_{f} - T_{f}T_{f}^{*}$.

It is useful (and sometimes more natural) to consider Hankel operators H_f for $f \in L^2(\mathbb{D}, dA/\pi)$ (so f is not necessarily bounded). To do this, we slightly modify the definition of H_f given in the paragraph above by restricting the domain of H_f to $H^{\infty}(\mathbb{D})$. So now H_f maps $H^{\infty}(\mathbb{D})$ into $(L_a^2)^{\perp}$ by the formula $H_f(g) =$

Received August 2, 1985. The author was partly supported by the National Science Foundation.