LOCAL COEFFICIENTS AS ARTIN FACTORS FOR REAL GROUPS

FREYDOON SHAHIDI

To Guity

Introduction. The purpose of this paper is to prove the equality of certain local coefficients of arithmetic significance which were attached to representations of quasi-split real reductive algebraic groups in [27] with their corresponding Artin factors attached by local class field theory [21]. As a consequence, we establish an identity satisfied by certain normalized intertwining operators. It seems to be useful in applications of the trace formula [1, 29].

More precisely, let G be the group of real points of a quasi-split reductive algebraic group over \mathbf{R} . Let Δ be the set of simple roots defined by a fixed minimal parabolic subgroup $P_0 = M_0 A_0 U$ of G. Fix $\theta \subset \Delta$, and let $P = P_\theta$ be the corresponding standard parabolic subgroup of G and write P = MAN for its Langlands decomposition. Fix a nondegenerate character χ of U and let $(\sigma, H(\sigma))$ be an irreducible admissible χ -generic Banach (in particular χ -generic unitary) representation of M (cf. Section 1). Given $\nu \in \mathfrak{a}_{\mathbb{C}}^*$, the complex dual of the Lie algebra of A, let $I(\nu, \sigma, \theta)$ be the continuously (quasi-unitarily, if σ is unitary) induced representation $\operatorname{Ind}_{P \uparrow G} \sigma \otimes e^{\nu}$, and let $V(\nu, \sigma, \theta)$ be its space (Section 0). Then $V(\nu, \sigma, \theta)_{\infty} = V(\nu, \sigma_{\infty}, \theta)$.

Now, let W be the Weyl group of A_0 in G. Choose $\widetilde{w} \in W$ such that $\widetilde{w}(\theta) \subset \Delta$.

Now, let W be the Weyl group of A_0 in G. Choose $\tilde{w} \in W$ such that $\tilde{w}(\theta) \subset \Delta$. Let N^- be the unipotent group opposite to N. Define $N_{\tilde{w}} = U \cap wN^-w^{-1}$, where w is a representative of \tilde{w} in G. For $f \in V(\nu, \sigma, \theta)_{\infty}$, define

$$A(\nu,\sigma,w)f(g) = \int_{N_{\sigma}} f(gnw) dn \qquad (g \in G)$$

(cf. (3.1) and (3.2) of Section 3). The convergence and meromorphic continuation of $A(\nu, \sigma, w)f$ has been studied by Knapp and Stein in [12, 13] (for minimal P see also Schiffmann [24]).

The representation $I(\nu, \sigma, \theta)$ is χ -generic. Let $\kappa(\nu, \sigma)$ be the canonical Whittaker functional attached to $V(\nu, \sigma, \theta)_{\infty}$ by relation (2.2) of Section 2. Then the local coefficient $C_{\chi}(\nu, \sigma, \theta, w)$ is a complex number defined by

$$\kappa(\nu,\sigma)(f) = C_\chi(\nu,\sigma,\theta,w) \kappa\big(\tilde{w}(\nu),\tilde{w}(\sigma)\big) \big(A(\nu,\sigma,w)(f)\big),$$

 $\forall f \in V(\nu, \sigma, \theta)_{\infty}$ (cf. Section 3 and [27]).

Received September 27, 1984. Revision received August 6, 1985. Partially supported by NSF grants MCS-8101600, MCS-8320317, and MCS-8108814(A02).