THE UNIFORMIZATION OF THE COMPLEMENT OF THE MANDELBROT SET

IRWIN JUNGREIS

1. Introduction. Let $p_c(z) = z^2 + c$, and p_c^k be the k'th iterate of p_c . The Mandelbrot set, M, is the set of c's for which p_c^k is bounded. It is known that these are the c's for which the Julia set of p_c^k is connected. In [3], Douady and Hubbard show that M is connected by constructing an analytic bijection from M^c to D^c . (All complements are with respect to the Riemann sphere, C.) Their construction does not lend itself to computation. We give an alternative construction which does. We also discuss some properties of the coefficients.

2. Notation and preliminaries. Let $f_k(c) = p_c^{k+1}(0)$. Clearly f_k is a monic polynomial of degree 2^k . It is easy to see that $|f_k(c)| > 2$ implies $|f_{k+1}(c)|$ $> |f_k(c)|$. Let $U_k = \{c \in \overline{\mathbf{C}} : |f_k(c)| > 2\}$. Then $U_k \subset U_{k+1}$, and $\bigcup_{0 \le k \le \infty} U_k$ M^c . If $f_k(c) = 0$ then $p_c^{k+1}(0) = 0$ and 0 is periodic under iterations of p_c . Thus c is in M . The only result we will need about M is that it is connected and simply connected, proved in [3]. We will use D_k to represent the closed disk of radius $2^{1/2^k}$ centered at the origin, and D to mean the disk of radius 1.

3. Construction of the uniformizing map

THEOREM 1. For each k there exists a unique analytic map $\Phi_k : M^c \mapsto \overline{C}$ satisfying $[\Phi_k(c)]^{2^k} = f_k(c)$ and $\Phi_k(c) \sim c$ as $c \mapsto \infty$.

Proof. Since *M* is simply connected, so is M^c . Also $f_k(c)/c^{2^k}$ is analytic and *Froof.* Since *M* is simply connected, so is *M*. Also $f_k(c)/c$ is analytic and nonzero on *M^c*. Hence there is an analytic function $g_k : M^c \rightarrow \mathbb{C}$ with $f_k(c) = c^{2k} e^{g_k(c)}$. We have $e^{g_k(\infty)} = 1$ so we may take $g_k(\infty) = 0$, and this specifies g_k completely. Now let $\Phi_k(c) = ce^{g_k(c)/2^k}$. Then Φ_k has the desired properties. \perp

THEOREM 2. When restricted to U_k , Φ_k is one-to-one and onto D_k^c .

Proof. For $c \in U_k$ we have $|\Phi_k(c)|^{2^k} > 2$, so $\Phi_k(U_k) \subset D_k^c$. Let c_1, c_2, \ldots be a sequence in U_k tending to a point of the boundary of U_k . Then $|f_k(c_1)|$, $|f_k(c_2)|, \ldots$ converges to 2, so $\Phi_k(c_1), \Phi_k(c_2), \ldots$ can have no limit in D_k^c . This shows that Φ_k is a proper map on U_k , and so has a degree. Since $\Phi_k(c) \sim c$ this degree is 1, so Φ_k is one-to-one on U_k .

Now choose $z \in D_k^c$. We wish to show that there is a $c \in U_k$ with $\Phi_k(c) = z$. Let $w = z^{2^k}$ and $z_1, z_2, \ldots, z_{2^k} = z$ be the $2^{k'}$ th roots of w. Since Φ'_k is non-zero

Received February 4, 1985.