MAXIMAL FUNCTIONS FOR CONVEX CURVES

ALEXANDER NAGEL, JAMES VANCE, STEPHEN WAINGER, and DAVID WEINBERG

§1. Introduction. Let $\Gamma: \mathbf{R} \to \mathbf{R}^n$ be a continuous curve in \mathbf{R}^n , $n \ge 2$, with $\Gamma(0) = 0$. To Γ we associate the Hilbert transform operator \mathfrak{F} and maximal operator \mathfrak{M} defined by

$$\mathfrak{F}(x) = \mathrm{p.v.} \int_{-\infty}^{\infty} f(x - \Gamma(t)) t^{-1} dt \tag{1}$$

$$\mathfrak{M}f(x) = \sup_{r>0} r^{-1} \int_0^r |f(x - \Gamma(t))| dt$$
(2)

where $x \in \mathbf{R}^n$ and f is in an appropriate class of functions on \mathbf{R}^n . For which curves Γ and which indices p are these operators bounded on $L^p(\mathbf{R}^n)$? Since the appearance of \mathfrak{F} in the literature twenty years ago, and especially in recent years, these problems have attracted a great deal of interest. See [SW] for a survey of results through 1977. Further developments are found in [NSW2], [Ne], [Wn], [NVWW1], [NVWW2], [CaW], [Ch], and [CNVWW].

In this paper, we will consider *plane* curves $(n = 2) \Gamma$ with

$$\Gamma(t) = (t, \gamma(t))$$
 where $\gamma : \mathbf{R} \to \mathbf{R}$ is convex for $t \ge 0$, continuous

and satisfies
$$\gamma(0) = \gamma'(0)^+ = 0.$$
 (3)

(The convexity hypothesis means, of course, that $[\gamma(C) - \gamma(B)]/(C - B) \ge [\gamma(B) - \gamma(A)]/(B - A)$ for $0 \le A < B < C$.)

For curves satisfying (3) with γ odd, a condition *equivalent* to the boundedness of \mathfrak{F} on $L^2(\mathbb{R}^2)$ is known (see [NVWW1]). We will show here that the same condition is sufficient for \mathfrak{M} also to be bounded on $L^2(\mathbb{R}^2)$. This condition is not necessary, however (see [CaW]). An interesting feature of the proof is the use of certain "balls" appropriate to the geometry of Γ , specifically parallelograms which are tangent to Γ .

§2. Statement of theorem and sketch of proof. Let Γ be a plane curve satisfying (3). Then, γ has one-sided derivatives for every t > 0 and a two-sided derivative except on a countable set. Let us write $\gamma'(t)$ for the right-hand

Received January 22, 1985. First and third authors supported in part by NSF grants at the University of Wisconsin-Madison.