POINTWISE CONVERGENCE OF SINGULAR CONVOLUTION OPERATORS

ALLAN GREENLEAF

§1. Introduction. Let K(z) be a classical Calderon-Zygmund kernel on \mathbb{C}^n : K(z) is homogeneous of degree -2n, smooth away from 0, and of mean value zero on the unit sphere in \mathbb{C}^n . Form a distribution on the Heisenberg group, identified as usual with $C_z^n \times R_t$, by tensoring K(z) with the Dirac measure $\delta(t)$. It has been shown by Geller and Stein [3] that the operation $f \to K(z)\delta(t) * f$ is bounded on $L^p(H_n)$ for 1 , where * denotesconvolution with respect to the Heisenberg group structure. Furthermore, letting $K^{\epsilon}(z) = \chi\{|z| > \epsilon\} K(z)$, they showed that $K^{\epsilon}(z)\delta(t) * f \to K(z)\delta(t) * f$ in L^{p} as $\epsilon \to 0$. We show here that this convergence also occurs pointwise; the proof is far more complicated than the proof of pointwise convergence for ordinary Calderon-Zygmund operators. In Section 2 we recall the classical proof and apply it to the kernel $K(z)\delta(t)$, yielding a nontrivial "error" term which then becomes the focus of study. Using a strong maximal operator on H_n , this term is put in a simplified form, and in Section 3 the L^2 theorem is proved using the method of Kolmogorov-Seliverstoff and Plessner. The proof is geometrical in nature and seems likely to generalize to similar operators on the boundaries of strictly pseudoconvex domains in \mathbb{C}^{n+1} . The proof of the L^p theorem, presented in Section 4, makes use of the group Fourier transform and is less likely to generalize.

I would like to thank E. M. Stein for allowing me to include Theorem 3 and for suggesting that the operators of Section 4 are vector-valued singular integral operators satisfying a Dini condition.

This work was supported by a National Science Foundation Postdoctoral Fellowship in the Mathematical Sciences.

§2. Preliminaries and method of proof. Let $H_n = \mathbb{C}_z^n \times \mathbb{R}_t$ with multiplication $(z,t)\cdot(z_1,t_1) = (z+z_1,t+t_1-\frac{1}{2}\operatorname{Im} z\cdot\bar{z}_1)$ and convolution $f*g(z,t) = \int_{H_n} f((z_1,t_1)) dt$ $(t_1)g((z_1,t_1)^{-1}(z,t))dz_1dt_1$. We sometimes write (z,t)=(x,y,t) where z=x+iy, $x, y \in \mathbb{R}^n$. Let K(z) be a Calderon-Zygmund kernel on \mathbb{C}^n , as in the introduction, and $K^{\epsilon}(z) = \chi\{|z| > \epsilon\}K(z)$ the standard truncations away from the origin. Let $K^{\epsilon}f = K^{\epsilon}(z)\delta(t) * f$, $Kf = K(z)\delta(t) * f$, defined initially for $f \in \mathcal{I}$.

THEOREM 1. Let $K^*f(z,t) = \sup_{0 < \epsilon < \infty} |K^{\epsilon}f(z,t)|$. Then

$$||K^*f||_{L^2(H_n)} \le c_K ||f||_{L^2(H_n)}, \quad f \in \mathscr{S}(H_n)$$
 (1)

and thus $K^{\epsilon}f(z,t) \to Kf(z,t)$ almost everywhere as $\epsilon \to 0$ for $f \in L^2(H_n)$.

Received November 13, 1982.