TOPOLOGICAL TRIVIALITY OF VARIOUS ANALYTIC FAMILIES

JOHN W. MORGAN

A set-up which occurs often in algebraic geometry is the following: W^{n+1} is a complex analytic variety; D^* is the punctured disk in the complex plane; and $p:W^{n+1}\to D^*$ is a proper map whose differential is everywhere of rank 1. It follows that the fibers, $p^{-1}(t)$, are all compact analytic varieties which depend analytically on t. In addition, they form a differentiably locally trivial fiber bundle over D^* . Of course, one is usually interested in the case when the fibers are algebraic (or possibly projective) varieties.

All the differentiable information in the set-up is contained in the real submanifold sitting above a circle with center at the puncture. Restricting to this submanifold yields a differentiable fiber bundle

$$p:X^{2n+1}\to S^1.$$

Let $\partial/\partial\theta$ be the standard vector field on S^1 . Well-known arguments using C^{∞} -partitions of unity allow us cover $\partial/\partial\theta$ by a vector field τ on X. Let $V^{2n} \subset X^{2n+1}$ be the fiber over the point of S^1 of argument 0. Integrating τ defines a map $\Phi: V \times [0, 2\pi] \to X^{2n+1}$ so that

- (a) $p \circ \Phi(v, t) = e^{it}, 0 \le t \le 2\pi$
- (b) $\Phi: V \times \{t\} \rightarrow p^{-1}(e^{it})$ is a diffeomorphism, and
- (c) $\Phi: V \times \{0\} \rightarrow V$ is the identity.

Let $\varphi: V \to V$ be the diffeomorphism given by the following composition:

$$V = V \times \{2\pi\} \xrightarrow{\Phi} p^{-1}(2\pi) = p^{-1}(0) = V.$$

It is clear that if in $V \times [0, 2\pi]$ we identify $(v, 2\pi)$ with $(\varphi(v), 0)$, then the quotient manifold is mapped diffeomorphically by Φ onto X:

$$\Phi : (V \times [0, 2\pi]) / \{(v, 2\pi) \sim (v, 0)\} \cong X$$

$$\downarrow \text{projection} \qquad \qquad \downarrow p$$

$$[0, 2\pi] / \{0 \sim 2\pi\} \qquad = S^{1}$$

The diffeomorphism $\varphi: V \to V$ is called the *monodromy of the family*. The map φ depends on the choice of vector field τ covering $\partial/\partial\theta$. As we vary τ we vary φ by

Received November 16, 1982.

This material is based upon work partially supported by the National Science Foundation under Grant No. MCS 82-01045.