THE Γ -IDEAL AND SPECIAL ZETA-VALUES

DAVID GOSS

Table of Contents

		page
§1.	Zeta-functions	346
§2.	A construction of some elliptic-modules	348
§3.	Special zeta-values	352
§4.	The Γ-ideal	353
§5.	The von-Staudt Theorem	355
§6.	Proof of the von-Staudt Theorem	357
App	endix. Two-variable Γ -functions and a measure	361
References		364

Introduction. In [2], we presented an exposition of L. Carlitz's von-Staudt theorem for $F_r[T]$ ($r = p^n$, p a rational prime), which determines the denominator of certain Bernoulli-style numbers. This seminal work contains the beginnings of many fruitful themes. Among them are: The study of new types of zeta-values, factorials and Hurwitz series for $F_r[T]$, and Γ -functions for $F_r[T]$. It is our purpose here to place these results in their most natural and general setting, where we replace $F_r[T]$ with the general rings A of [4]; i.e., A is the ring of functions holomorphic away from ∞ , a rational point, on a smooth, projective, geometrically irreducible curve, C, over F_r . We set k to be the function field and K its completion at ∞ .

As A need not be a p.i.d., individual special-values alone do not suffice and one must consider the *ideals* generated by many special-values. So, we have "idealized" zeta-values, Γ -ideals, etc. For instance, to get an appropriate Γ -ideal, we need to view Carlitz's factorial *as a function* and look at the ideal generated by its values. In consequence of the passing to ideals, the proof here is more complicated than that of [2].

In the course of this work, some very important general principles became clear. The first is what we call the "two-variable principle": Functions such as *L*-series or Γ -functions, whether considered at the prime ∞ or at finite primes by interpolation, are natural continuous functions on a product $X \times Y$, where Y is \mathbb{Z}_p or $\mathbb{Z}_p \times \{a \text{ finite abelian group}\}$ and X is a characteristic -p space. Further, if $y \in Y$ is fixed, the resulting function on X is given by a power series with a

Received November 10, 1979. Revision received March 5, 1980.