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0. Introduction

(a) On a smooth algebraic curve C of genus g we consider a divisor D of
degree d. A classical problem is to determine the dimension h(D) of the vector
space H(D) of rational functions having poles only on D, or equivalently the
dimension r(D) of the complete linear system D P(H(D)) of effective
divisors linearly equivalent to D. Denoting by K the canonical divisor, the
Riemann-Roch formula

r(D)=d-g+h(K D)

Received April 27, 1979. Revision received November 14, 1979. The first author’s research was
partially supported by NSF Grant MCS7707782 and the second author’s by NSF Grant
MCS7804008.

233


