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ON THE VARIETY OF SPECIAL LINEAR SYSTEMS

ON A GENERAL ALGEBRAIC CURVE
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(a) On a smooth algebraic curve C of genus g we consider a divisor D of
degree d. A classical problem is to determine the dimension 4A°(D) of the vector
space H°(D) of rational functions having poles only on D, or equivalently the
dimension r(D) of the complete linear system |D|=P(H%D)) of effective
divisors linearly equivalent to D. Denoting by K the canonical divisor, the
Riemann-Roch formula

r(Dy=d—-g+ h%K—- D)
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