A SMOOTHING PROPERTY OF THE HENKIN AND SZEGÖ PROJECTIONS

PATRICK AHERN AND ROBERT SCHNEIDER

Let D be a bounded strictly psuedoconvex domain in \mathbb{C}^n with smooth boundary; $D = \{z : \rho(z) < 0\}$, where $d\rho(z)$, the gradient of ρ , is not 0 for $z \in \partial D$. The vector field

 $i\overline{\partial}\rho(z) = \left(i\frac{\partial\rho}{\partial\overline{z}_1}(z),\ldots,i\frac{\partial\rho}{\partial\overline{z}_n}(z)\right)$

is tangent to ∂D for all $z \in \partial D$. Suppose that a smooth tangent vector field r is given on ∂D such that the complex inner product $\langle r(z), i\bar{\partial}\rho(z)\rangle \neq 0$ for any $z \in \partial D$. Following S. Krantz, [6], we say that r is a complex normal vector field. Now suppose that f is a bounded function defined on ∂D and that there is a constant K such that $||f \circ \gamma||_{\alpha} \leq K$, for every integral curve γ of the vector field r. Here the norm is the norm in the space of Lipshitz functions of order α . The theorem proved in this paper says that under these conditions the Henkin and Szegö projections of f satisfy a Lipshitz condition of order α in f in other words, in order that the Henkin or Szegö projection of f satisfy a Lipshitz condition of order f in every direction it is sufficient that f itself satisfy a Lipshitz condition of order f only in the direction of the vector field f. The function f need not even be continuous.

This result is a generalization of a theorem proved in [1] and also in [4], which says that if f satisfies a Lipshitz condition of order α on ∂D then the Henkin and Szegö projections of f satisfy a Lipshitz condition of the same order. It can also be regarded as a generalization of a result of W. Rudin [5]. Rudin's result concerns a bounded holomorphic function, f, defined on the unit ball, B, in C^n . For $\zeta \in \partial B$ and $z \in C$, |z| < 1, he defines $F_{\zeta}(z) = f(\zeta z)$. He then shows that if F_{ζ} satisfies a Lipshitz condition of order α , uniformly in ζ , then f satisfies a Lipshitz condition of order α . Rudin's result follows from ours because if f satisfies the hypotheses of Rudin's theorem then its boundary values satisfy the hypotheses of our theorem, with f(z) = iz, and f is the Szegö projection of its boundary values. There is a related result due to S. Krantz, [6]. Krantz shows that if f is bounded and holomorphic in a domain D, (not necessarily pseudoconvex), and f satisfies a Lipshitz condition of order α on integral curves of some complex normal vector field f on ∂D , then f satisfies a Lipshitz condition of order α in D. Actually, Krantz does not require that the vector field f exist globally on ∂D .

Received June 14, 1979. Revision received July 26, 1979.