NORMAL AUTOMORPHISMS OF ABSOLUTE GALOIS GROUPS OF p-ADIC FIELDS

MOSHE JARDEN AND JÜRGEN RITTER

Introduction. A (topological) automorphism σ of a profinite group G is said to be *normal* if $N^{\sigma} = N$ for every normal closed subgroup N of G; it is said to be *families preserving* if for all $g \in G$, the closed subgroup $\langle g^{\sigma} \rangle$ generated by g^{σ} is conjugate in G to $\langle g \rangle$. Finally σ is called *point-wise inner* if g^{σ} is conjugate to g for every $g \in G$.

The groups of all normal automorphisms, families preserving automorphisms, point-wise inner automorphisms and inner automorphisms of G are denoted by $\operatorname{Aut}_{n}(G)$, $\operatorname{Aut}_{f}(G)$, $\operatorname{Aut}_{c}(G)$ and $\operatorname{Aut}_{i}(G)$, respectively. Clearly $\operatorname{Aut}_{i}(G) \leq \operatorname{Aut}_{i}(G) \leq \operatorname{Aut}_{n}(G)$.

Neukirch proved in [17] that every automorphism of the absolute Galois group, $G(\mathbf{Q})$, of \mathbf{Q} is normal. Applying Representation Theory of finite groups and a theorem of Scholz [19], Ikeda continued this result and proved in [7] that $\operatorname{Aut}_n(G(\mathbf{Q})) = \operatorname{Aut}_c(G(\mathbf{Q}))$. This was also done, in a different way, by Komatsu in [14]. Then Uchida in [21], Iwasawa in [10], and Ikeda in [8] and [9] have finally proved the famous conjecture of Neukirch, namely that every automorphism of $G(\mathbf{Q})$ is actually inner. Beyond this Ikeda showed in [9] that if p is a prime and K is a finite extension of \mathbf{Q}_p , then every point-wise inner automorphism of G(K), the absolute Galois group of K, is inner. The main purpose of this note is to strengthen this result and to prove:

THEOREM A. If K is a finite extension of Q_p , then every normal automorphism of G(K) is inner.

An analogous result was obtained in [12], where it was concluded from the main result that every normal automorphism of a non-abelian free profinite group is inner. Here we generalize this result in the following way.

We call a class of finite groups *full* if it is closed under the formation of subgroups, homomorphic images and group extensions. Examples of full classes are the class of all finite groups, all *p*-groups and all solvable finite groups. Let \mathcal{C} be a full class of finite groups. A *pro-C-group presented by e generators and d word-relations* is the pro- \mathcal{C} -completion of a discrete group presented by *e* generators by *e* generators and *d* relations in these generators. We prove:

Received November 24, 1978. Revision received September 24, 1979. The first author was partially supported by a DAAD grant. The work was partially done while the second author was visiting Tel-Aviv University.