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GALOIS GROUPS OF ENUMERATIVE PROBLEMS

JOE HARRIS
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0. Introduction. This paper is concerned with the solvability of certain
enumerative problems in algebraic geometry. To illustrate the questions raised,
consider one of the problems dealt with belowmthat of locating the flexes of a
plane curve. We let C c P be a complex plane curve of degree d, given as the
locus of the homogeneous polynomial F(Xo,X,Xa)= ZagjX-i-Jx[xJ2 (or in

j.euclidean coordinates x Xi/Xo, as the locus of f(x,x2) ,aijxlxa), we will
take coefficients ai. to be general complex numbers. At a generic point of C,
then, the tangent lne Tp(C) intersects C with multiplicity mp(C. I)= 2; we
say that p is a flex point of C if mp(l. C)> 3. An elementary count of
parameters leads us to expect that C will have a finite number of flex points p;
and accordingly we may ask two questions: first, how many flexes does C
possess? and second, can we find them?--that is, is it possible to give a formula
for coordinates xi(p) of the flex points p of C in terms of the coefficients

There are a number of ways of answering the first of these questions;
historically the first was to note that the flexes of C comprise the locus
F(X) H(X)= O, where H(X) is the Hessian

H(X) det
OXiOXj
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