GALOIS GROUPS OF ENUMERATIVE PROBLEMS

JOE HARRIS

Contents.

0.	Introduction	685
I.	Galois and monodromy groups	688
II.	Flexes and bitangents of plane curves	690
	1. Plücker formulas	690
	2. Flexes of a plane cubic	693
	3. Flexes of a plane curve of degree $d \ge 4$	697
	4. Bitangents to a smooth plane quartic	700
	5. Bitangents of a plane curve, degree $d \ge 5$	706
[11.	Lines on hypersurfaces	707
	1. The Fano scheme	707
	2. Lines on a hypersurface in P^n , $n \ge 4$	712
	3. Lines on a cubic surface	715
	4. Bitangents of a plane quartic II	719
IV.	The problem of five conics	721
	References	724

0. Introduction. This paper is concerned with the solvability of certain enumerative problems in algebraic geometry. To illustrate the questions raised, consider one of the problems dealt with below-that of locating the flexes of a plane curve. We let $C \subseteq P^2$ be a complex plane curve of degree d, given as the locus of the homogeneous polynomial $F(X_0, X_1, X_2) = \sum a_{ij} X_0^{d-i-j} x_1^i x_2^j$ (or in euclidean coordinates $x_i = X_i/X_0$, as the locus of $f(x_1, x_2) = \sum a_{ij} x_1^i x_2^j$; we will take coefficients a_{ij} to be general complex numbers. At a generic point of C, then, the tangent line $l = T_p(C)$ intersects C with multiplicity $m_p(C \cdot l) = 2$; we say that p is a flex point of C if $m_p(l \cdot C) \ge 3$. An elementary count of parameters leads us to expect that C will have a finite number of flex points p_{α} ; and accordingly we may ask two questions: first, how many flexes does C possess? and second, can we find them?-that is, is it possible to give a formula for coordinates $x_i(p_\alpha)$ of the flex points p_α of C in terms of the coefficients a_{ij} ?

There are a number of ways of answering the first of these questions; historically the first was to note that the flexes of C comprise the locus F(X) = H(X) = 0, where H(X) is the Hessian

$$H(X) = \det\left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right);$$

Received February 13, 1979. Research partially supported by NSF Grant MCS 77-01964.