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RING SPECTRA WHICH ARE THOM COMPLEXES

MARK MAHOWALD

For our purposes a ring spectrum E is a spectrum with a map E/ E E
and a unit i:SE such that the following diagrams commute up to
homotopy:

The ring spectrum is abelian if

T
E / E > E / E

E

commutes up to homotopy where T is the map that exchanges factors.
Let L be a space and let be a fibration over L classified by a mapf L BF

(the classifying space of stable spherical fibrations). We can form the Thom
spectrum T(f) of f as a suspension spectrum by letting (T(f)) be the Thorn
complex of L n--YBFn where L is the n-skeleton of L. This makes
T(f)-- {(T(f))n) into a suspension spectrum.

Spectra which arise in this fashion have a unit which is the inclusion of the
fiber on the Thorn class.

Natural examples of maps f:L BF give a plethora of interesting spectra:
among them are K(Z2, 0), K(Z, 0), the Brown-Gitler spectrum, and a spectrum
for which the secondary operation of Adams j,j [1] is defined and non-zero on
the Thom class.

Frequently, the Thom spectra which we obtain in this manner are
commutative ring spectra. A useful feature of these Thom spectra is that they
admit particularly nice resolutions. Consequently, these spectra give rise to
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