PURE POINT SPECTRUM AND NEGATIVE CURVATURE FOR NONCOMPACT MANIFOLDS

HAROLD DONNELLY AND PETER LI

1. Introduction. Let q(x) be a real valued continuous function on the real line R. Suppose that $\lim q(x) = \infty$ as $|x| \to \infty$. In his famous paper [11], H. Weyl showed that, for q monotonic in |x|, the unbounded operator $-d^2/dx^2 + q(x)$, acting on $L^{2}(R)$, has pure point spectrum. Titchmarsh [9] showed that it is possible to remove the monotonicity hypothesis on q.

The present paper is devoted to some analogous theorems for Riemannian manifolds. Suppose that M is a complete Riemannian manifold. The Laplacian of M will be denoted by Δ . Fix a point $p \in M$ and write K(r) = $\sup\{K(x,\pi) \mid d(p,x) \ge r\}$ where π is a two plane in $T_x M$. Then one has

THEOREM I.1. Let M be a complete simply connected negatively curved Riemannian manifold. If $\lim K(r) = -\infty$ as $r \to \infty$, then Δ has pure point spectrum.

For the special case of surfaces we can ease the topological restrictions to obtain:

THEOREM I.2. Let M be a complete surface with finitely generated fundamental group $\pi_1(M)$. If $\lim K(r) = -\infty$ as $r \to \infty$, then Δ has pure point spectrum.

The main concern of the present paper is to establish Theorems I.1, I.2. In a final section, we explain more clearly the relationship to the Titchmarsh-Weyl theorem.

2. The decomposition principle. Let *M* be a complete Riemannian manifold without boundary. The Laplacian Δ of M is formally self adjoint on $C_0^{\infty}(M)$. Since M is complete, it is well known [4] that Δ has a unique self-adjoint extension, also denoted Δ , to an unbounded operator on $L^2(M)$. Moreover, the domain of Δ consists of those $f \in L^2(M)$ such that $\Delta f \in L^2(M)$ in the sense of distributions. If $N \subset M$ is a compact manifold with boundary, of the same dimension as M, then one obtains a self-adjoint extension Δ' of the Laplacian Δ of M - N by imposing Dirichlet boundary conditions.

By analogy with [5], one has the following:

PROPOSITION 2.1. (Decomposition Principle). Let M, N be as above. Then the Laplacians Δ , Δ' have the same continuous spectrum.

Received November 30, 1978. Research of first author partially supported by NSF Grant MCS76-84177.