ESTIMATE ON THE FUNDAMENTAL FREQUENCY OF A DRUM ## MICHAEL E. TAYLOR Recently, there has been some interest in estimating from below the smallest eigenvalue Λ_1^2 of $-\Delta$ on a connected domain $\Omega \subset \mathbb{R}^2$ with Dirichlet boundary conditions. In particular, the following result has been obtained by Hayman [2]. Theorem 1. If Ω is simply connected, then $$\Lambda_1 \geqslant \frac{c_0}{\rho}$$. Here ρ is the supremum of the radius of a disc that can be placed in Ω . c_0 is an absolute constant; Hayman has $c_0 = 1/30$. In this note we will establish the following generalization. Theorem 2. If Ω is k-connected, then $$\Lambda_1 \geqslant \frac{c_1}{\sqrt{k} \rho}$$ where c_1 is an absolute constant. The proof will be based on the following eigenvalue estimate, which we established in [5]. THEOREM A. Let Q be the unit square in R^2 (or the unit cube in R^n), $K \subset \overline{Q}$ a compact subset. Then the smallest eigenvalue μ_1 of $-\Delta$ on $Q \setminus K$, with Dirichlet boundary conditions on ∂K and Neumann boundary conditions on $\partial Q \setminus \partial K$, satisfies the estimate $$\mu_1 \geqslant c_2 \operatorname{cap} K$$ for some absolute constant c_2 (depending only on n). Osserman in [4] has proved a version of theorem 2, namely $\Lambda_1 \ge c_1'/k\rho$. For large k, our theorem is an improvement of his result. Due to inertia on the part of the author, the absolute constant c_1 has not been evaluated, but probably for k small, Osserman's result is sharper than ours. Osserman has $c_0 = \frac{1}{2}$, $c_1 = 1$ ($k \ge 2$). Received March 27, 1978. Revision received December 1, 1978. Research partially supported by the Alfred P. Sloan foundation and by NSF grant MCS 77-03634.