A NOTE ON A RESULT OF J. BRAM

TAKASHI YOSHINO

In [1] J. Bram proved the following:

THEOREM 1. Let A be a subnormal operator on a Hilbert space H and B its minimal normal extension on $K \supseteq H$. Then necessary and sufficient conditions that a bounded operator T_0 on H have an extension T on K such that T commutes with B are:

- (a) T_0 commutes with A.
- (b) For every finite set $\{x_i\}_{i=0}^n$, $x_i \in H$,

$$\sum_{m,\,n=0}^{r} \langle A^{\,m}\!T_{\,0}x_{n}\,\,,\,A^{\,n}\!T_{\,0}x_{m}
angle \leq \,c\,\sum_{m,\,n=0}^{r} \langle A^{\,m}\!x_{n}\,\,,\,A^{\,n}\!x_{m}
angle$$

where c is fixed.

If the extension T exists, it is unique.

Condition (a) is implied by (b) and is therefore superfluous. To see this we modify Bram's proof as follows: Let \mathfrak{D} be the set of vectors in K of the form $\sum_{n=0}^{r} B^{*n}x_n$ for some r and $x_i \in H$ and define

$$T\left(\sum_{n=0}^{r} B^{*n} x_n\right) = \sum_{n=0}^{r} B^{*n} T_0 x_n$$

Bram's proof that T is well-defined and bounded only uses (b). Now notice that

$$TB^*\left(\sum_{n=0}^r B^{*^n} x_n\right) = T\left(\sum_{n=0}^r B^{*^{n+1}} x_n\right) = \sum_{n=0}^r B^{*^{n+1}} T_0 x_n$$
$$= B^*\left(\sum_{n=0}^r B^{*^n} T_0 x_n\right) = B^*T\left(\sum_{n=0}^r B^{*^n} x_n\right)$$

so $[T, B^*] = 0$. Since B is normal we have [T, B] = 0 which implies $[T_0, A] = 0$ on H.

This remark also applies to Itô's generalization of Bram's result [2].

References

- 1. J. BRAM, Subnormal operators, Duke Math. J. 22(1955), 75-94
- T. Irô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaidô Univ. 14(1958), 1-15.

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, TÔHOKU UNIVERSITY, KAWAUCHI, SENDAI, JAPAN

Received September 15, 1976.