STRUCTURE AND INTERPOLATION THEOREMS FOR CERTAIN LIPSCHITZ SPACES AND ESTIMATES FOR THE 5 EQUATION

STEVEN G. KRANTZ

The principal results of this paper are of two types. We first prove some structure and interpolation theorems for the non-isotropic Lipschitz spaces which have seen considerable use recently in the theory of several complex variables (c.f. [1], [3], [7], [12]). We then give an application of one of these results to the regularity problem for the $\bar{\partial}$ equation.

In particular, we shall be interested in Lipschitz regularity for the $\bar{\partial}$ operator. This question has already been considered, and significant results obtained, by Alt [1] and Siu [10]. Our results will contain theirs, but we will use some ideas from [10] to obtain them.

We now recall some of the notions connected with the $\bar{\partial}$ operator, and some of the function spaces we will need. In general, notation will be as in [7]. Recall that if $\mathcal{E} \subseteq \mathbb{R}^n$ then $\Lambda_{\alpha}(\mathcal{E})$ denotes the classical Lipschitz space on \mathcal{E} (c.f. Stein [10]). Also, $C^k(\mathcal{E})$ denotes the space of functions with bounded, continuous derivatives up to order k under the norm

$$||f||_{C^{k}(\mathbb{E})} = \sum_{|\alpha| \leq k} \left| \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} f \right| \right|_{L^{\infty}(\mathbb{E})}$$

If $\mathcal{E} \subset \mathbb{C}^n$ is open with C^2 boundary, and $z_1, \dots, z_n, \bar{z}_1, \dots, \bar{z}_n$ denote the usual complex coordinate functions, then Λ_{α} and C^k may be defined in an obvious way in terms of complex coordinates. Let $W \supseteq b\mathcal{E}$ be a tubular neighborhood of $b\mathcal{E}$ with a smooth retraction to $b\mathcal{E}$ which we denote by $z \to \bar{z}$. The choice of W is not important, but once chosen it is forever fixed. For $w \in b\mathcal{E}$ let ν_w denote the unit outward normal to $b\mathcal{E}$ and let $\{\mathbf{C}\nu_w\}$ be the one dimensional complex subspace of \mathbf{C}^n generated by ν_w . If T_z denotes the complexified tangent space to the manifold $\mathcal{E} \subseteq \mathbf{C}^n$ at $z \in \mathcal{E} \cap W$, then we may regard $\{\mathbf{C}\nu_z\}$ as a subspace of T_z and we denote it by T_z^2 . We let T_z^1 be the complement of T_z^2 in T_z with respect to the canonical Hermitian inner product. If $u \in C^1(\mathcal{E})$ we let grad u(z) denote any normalized, real (2n - 2)-tuple of basis vectors for T_z^1 applied to u at z. Let \mathcal{C}^k denote the class of C^k curves $\gamma : [0, 1] \to W \cap \mathcal{E}$ satisfying $|\gamma^{(i)}(t)| \leq 1$ for all $1 \leq j \leq k$ and $t \in [0, 1]$. Let $\mathcal{C}_i^k \subseteq \mathcal{C}^k$ be those curves satisfying $\dot{\gamma}(t) \in T_{\gamma(t)}^1$ for all $t \in [0, 1]$.

Definition 0.1. If $0 < \alpha \leq \beta < \infty$, ε is as above, we define

$$\Gamma_{\alpha,\beta}(\mathcal{E}) = \{f: ||f||_{\Lambda_{\alpha}} + \sup_{\gamma \in \mathfrak{E}_{1}(\beta)^{+1}} ||f \circ \gamma||_{\Lambda_{\beta}([0,1])} = ||f||_{\Gamma_{\alpha,\beta}} < \infty \}.$$

Received January 29, 1976. Revision received May 3, 1976. The author was partially supported by NSF Grant MP 74-7035 during this work.