June 1976

EXTENDING FUNCTIONS FROM SUBMANIFOLDS OF THE BOUNDARY

DANIEL BURNS, JR., AND EDGAR LEE STOUT

Introduction.

Given a smoothly bounded domain D in a complex manifold \mathfrak{M} , and given a smooth submanifold Γ of ∂D , it may happen that for every smooth function f on Γ , there is a holomorphic function F on D with smooth boundary values that agrees on Γ with f. We have not specified the notion of smoothness; each specification gives rise to a separate problem.

In this paper, we deal with the real analytic case. Let D be a strictly pseudoconvex domain in \mathfrak{M} with \mathbb{C}^3 boundary. Define a real analytic submanifold Σ of \mathfrak{M} that is contained in ∂D to be an *analytic interpolation manifold (relative* to D) if every real analytic function on Σ is the restriction to Σ of a function holomorphic on some neighborhood of \overline{D} . (The neighborhood depends on the function, of course.) Our main results are two characterizations of analytic interpolation manifolds:

THEOREM 1. Σ is an analytic interpolation manifold if and only if $T_{p}(\Sigma) \subset T_{p}^{c}(\partial D)$ for every $p \in \Sigma$.

Here $T_{p}(\Sigma)$ is the tangent space to Σ at p, and $T_{p}^{c}(\partial D)$ is the maximal complex subspace of $T_{p}(\partial D)$.

THEOREM 2. Σ is an analytic interpolation manifold if and only if there exists a complex submanifold \mathfrak{N} of a neighborhood of \overline{D} such that $\mathfrak{N} \cap \overline{D} = \Sigma$.

In order for Σ to be an analytic interpolation manifold, there should obviously be no tangential Cauchy-Riemann equations induced on Σ from \mathfrak{M} , *i.e.*, $T_{p}(\Sigma)$ should be totally real: If J is the almost complex structure on $T_{p}(\mathfrak{M})$, we must have $T_{p}(\Sigma) \cap JT_{p}(\Sigma) = 0$. Any Σ satisfying the differential condition of Theorem 1 is totally real and hence has real dimension not more than m - 1, $m = \dim_{\mathbf{C}} \mathfrak{M}$. Indeed, if $0 \neq \xi_{p} \in T_{p}(\Sigma) \cap JT_{p}(\Sigma)$, then there are local vector fields ξ', ξ'' on \mathfrak{M} tangent to Σ along Σ , and tangent to ∂D along ∂D , with $\xi_{p}' =$ $\xi_{p}, \xi_{p}'' = J\xi_{p}$. Then $[\xi', \xi'']_{p} \in T_{p}(\Sigma) \subset T_{p}^{\mathbf{C}}(\partial D)$. Thus, if ρ is a strictly plurisubharmonic defining function for ∂D (cf. §I below), one has

$$\begin{split} i\partial\partial\rho(\xi',\,\xi'') &= -id(\partial\rho)(\xi',\,\xi'') \\ &= -i\xi'(\partial\rho(\xi')) + i\xi''(\partial\rho(\xi')) + i\partial\rho([\xi',\,\xi'']), \end{split}$$

Received January 22, 1976. This research supported in part by NSF Grants MPS 72-05048A02 and GP38220. Some of the results of this paper were presented by the second author to the Summer Institute on Several Complex Variables, Williamstown, 1975.