CONVERGENCE OF REVERSED MARTINGALES WITH MULTIDIMENSIONAL INDICES

ALLAN GUT

1. Introduction.

Let $d \geq 2$ be an integer and let Z_+^d denote the positive d-dimensional integer lattice points. For $k, 1 \leq k \leq d$, let $(\Omega_k, \Omega_k, P_k)$ be a probability space, and set $\Omega = \coprod_k \Omega_k$, $\alpha = \bigotimes \alpha_k$ and $P = \coprod_k P_k$. An indexed random variable, defined on (Ω, Ω, P) , will always be interpreted as having its index in Z_+^d (unless explicitly otherwise stated). The notation $\mathbf{m} < \mathbf{n}$, where $\mathbf{m} = (m_1, m_2, \dots, m_d)$ and $\mathbf{n} = (n_1, n_2, \dots, n_d) \in Z_+^d$, means that $m_i \leq n_i$, $i = 1, 2, \dots, d$, (cf. [3]) and $\mathbf{n} \to \infty$ is to be understood as $n_i \to \infty$, $i = 1, 2, \dots, d$. Also, $|\mathbf{n}|$ is used to denote $\coprod_{k=1}^d n_k$.

Let $\{\mathfrak{F}_{\mathbf{n}} = \mathfrak{F}_{n_1}^{(1)} \otimes \mathfrak{F}_{n_2}^{(2)} \otimes \cdots \otimes \mathfrak{F}_{n_d}^{(d)}; \mathbf{n} \in \mathbb{Z}_+^d\}$ be a sequence of σ -algebras contained in \mathfrak{A} and such that $\mathfrak{F}_{\mathbf{m}} \subset \mathfrak{F}_{\mathbf{n}}$ if $\mathbf{m} < \mathbf{n}$. Following Cairoli [1] and Cairoli and Walsh [3] we define a martingale to be $\{X_{\mathbf{n}}, \mathfrak{F}_{\mathbf{n}}; \mathbf{n} \in \mathbb{Z}_+^d\}$, where

(1.1)
$$X_n$$
 is \mathfrak{F}_n -measurable and integrable for every n ;

$$(1.2) X_{\mathbf{m}} = E(X_{\mathbf{n}} \mid \mathfrak{F}_{\mathbf{m}}) \quad \text{a.s.} \quad \text{if} \quad \mathbf{m} < \mathbf{n}.$$

As in the one-dimensional case it is easy to see that (1.2) is equivalent to

(1.3)
$$\int_{\Lambda} X_{\mathbf{m}} dP = \int_{\Lambda} X_{\mathbf{n}} dP; \quad \text{for } \Lambda \in \mathfrak{F}_{\mathbf{m}}, \quad \mathbf{m} < \mathbf{n}.$$

A submartingale will be defined exactly as a martingale except that the equalities in (1.2) and (1.3) are changed to " \leq ".

If $\{\mathfrak{F}_n\}$ is a sequence of σ -algebras of product type contained in \mathfrak{A} , such that $\mathfrak{F}_m \supset \mathfrak{F}_n$ if m < n, we define a reversed martingale to be $\{X_n, \mathfrak{F}_n : n \in Z_+^d\}$, where (1.1) is satisfied and

$$(1.4) X_{\mathbf{m}} = E(X_{\mathbf{n}} \mid \mathfrak{F}_{\mathbf{m}}) \text{ a.s. if } \mathbf{n} < \mathbf{m}.$$

Again it is easy to see that (1.4) is equivalent to

(1.5)
$$\int_{\Lambda} X_{\mathbf{m}} dP = \int_{\Lambda} X_{\mathbf{n}} dP \quad \text{for} \quad \Lambda \in \mathfrak{F}_{\mathbf{m}}, \quad \mathbf{n} < \mathbf{m}.$$

A reversed submartingale will be defined the same way except that the equalities in (1.4) and (1.5) are changed to " \leq ".

Also, in the reversed cases we set $\mathfrak{F} = \bigcap_{n} \mathfrak{F}_{n}$.

In [1] maximal inequalities corresponding to Doob [5], 314 and 317 are proved

Received December 17, 1975.