NONLINEAR CAUCHY–RIEMANN EQUATIONS AND q-PSEUDOCONVEXITY

RICHARD F. BASENER

0. Introduction. This paper is devoted to a study of the equation

\[\partial f \wedge (\partial \bar{\partial} f)^q = 0, \]

where \(f \) is a smooth function on a complex (analytic) manifold \(\Omega \) and \(q \) is a nonnegative integer. If \(\Omega \) has dimension \(n \) and if \(0 < q < n \), then (1) is equivalent to a system of nonlinear partial differential equations which may be regarded as a generalization of the usual Cauchy–Riemann equations. Our main result (Theorem 3 in Section 3) is that the solutions of (1) define a notion of convexity which is related (at least locally) to \(q \)-pseudo convexity in the same way that holomorphic convexity is related to ordinary pseudoconvexity.

1. Definition and some basic properties of \(q \)-holomorphic functions.

Definition. Let \(\Omega \) be a complex manifold. Define

\[\mathcal{O}_q(\Omega) = \{ f \in C^\infty(\Omega) \mid \partial f \wedge (\partial \bar{\partial} f)^q = 0 \}. \]

(Note that \(\mathcal{O}_0(\Omega) \subseteq \mathcal{O}_1(\Omega) \subseteq \cdots \subseteq \mathcal{O}_n(\Omega) = \mathcal{O}_{n+1}(\Omega) = \cdots = C^\infty(\Omega) \), if \(\Omega \) has dimension \(n \).) If \(f \in \mathcal{O}_q(\Omega) \), we will say that \(f \) is \(q \)-holomorphic on \(\Omega \).

Before describing some examples of \(q \)-holomorphic functions it is convenient to develop some additional criteria for recognizing them.

Proposition 1. Let \(\phi : \Omega_0 \to \Omega_1 \), where \(\Omega_0 \), \(\Omega_1 \) are complex manifolds and \(\phi \) is holomorphic. If \(f \in \mathcal{O}_q(\Omega_1) \), then \(f \circ \phi \in \mathcal{O}_q(\Omega_0) \).

Proof. \(\partial(f \circ \phi) \wedge (\partial \bar{\partial} (f \circ \phi))^q = (\partial f \wedge [\partial \bar{\partial} f]^q) \circ \phi = 0. \)

Corollary. Let \(\Omega \) be a complex manifold and let \(V \) be a smooth subvariety of \(\Omega \). If \(f \in \mathcal{O}_q(\Omega) \), then \(f|_V \in \mathcal{O}_q(\Omega) \).

Proof. Apply Proposition 1 with \(\phi \) the inclusion map of \(V \) into \(\Omega \).

Definition. Let \(\Omega \) be an open subset of \(\mathbb{C}^n \), and let \(z = \{ z_1, \cdots, z_n \} \) be coordinates for \(\mathbb{C}^n \). If \(f \in C^\infty(\Omega) \) and \(x \in \Omega \) we define

\[M_x(f) = \begin{pmatrix} f_{z_1}(x) & \cdots & f_{z_n}(x) \\ f_{z_1\bar{z}_1}(x) & \cdots & f_{z_n\bar{z}_n}(x) \\ \vdots & \vdots & \vdots \\ f_{z_n\bar{z}_1}(x) & \cdots & f_{z_n\bar{z}_n}(x) \end{pmatrix}. \]

Received September 22, 1975. Research supported in part by NFS Grants GP-30671 and MPS 75-07922.