A *p*-ADIC THEORY OF HECKE POLYNOMIALS

ALAN ADOLPHSON

1. Introduction.

Let p be a fixed odd prime and let $\mathbf{\bar{F}}_{p}$ be the algebraic closure of \mathbf{F}_{p} , the prime field of characteristic p. Denote by E_{λ} the elliptic curve whose projective equation is

(1.1)
$$y^2 z = x(x - z)(x - \lambda z),$$

where $\lambda \in \overline{\mathbf{F}}_{p}$ and $\lambda \neq 0, 1$. The zeta function of E_{λ} is defined by

(1.2)
$$\zeta(E_{\lambda}, t) = \exp\left(\sum_{m=1}^{\infty} N_m t^m / m\right),$$

where N_m is the number of points of E_{λ} rational over \mathbf{F}_{α} , the finite field of $q = p^{m(\deg_{\lambda})}$ elements (deg $\lambda = [\mathbf{F}_{p}(\lambda) : \mathbf{F}_{p}]$). It is well known that the zeta function has the form

(1.3)
$$\zeta(E_{\lambda}, t) = \frac{(1 - \pi_1(\lambda)t)(1 - \pi_2(\lambda)t)}{(1 - t)(1 - tp^{\deg \lambda})}$$

Let \tilde{S}' be the set of supersingular moduli, i.e., the zeros of the Hasse invariant

(1.4)
$$g(\lambda) = \sum_{j=0}^{(p-1)/2} ((\frac{1}{2})_j / j!)^2 \lambda^j,$$

and let \overline{S} be the union of $\overline{S'}$ with the set $\{0, 1, \infty\}$. In [8], Dwork gives a *p*-adic theory for the infinite product defined for each positive integer k by

(1.5)
$$M_{k+2}(t) = \prod_{\lambda} \prod_{j=0}^{k} (1 - t^{\deg \lambda} \pi_1(\lambda)^{k-j} \pi_2(\lambda)^j)^{-1/\deg \lambda},$$

where the outer product is over the complement of \bar{S} in $\bar{\mathbf{F}}_{p}$. More precisely, Dwork shows that

$$M_{k+2}(t) = \det(I - t\alpha \mid L/l_kL),$$

where $\det(I - t\alpha \mid L/l_kL)$ is the Fredholm determinant of a completely continuous endomorphism α of a *p*-adic Banach space L/l_kL . From this one can deduce that $M_{k+2}(t)$ is actually a polynomial. The Banach space L/l_kL is the cokernel of a linear differential operator l_k , acting on the space L of functions

Received July 28, 1975. This paper forms part of the author's doctoral dissertation at Princeton University, written while the author was supported by a National Science Foundation Graduate Fellowship.