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INTEGRAL REPRESENTATION FORMULAS ON
STRICTLY PSEUDOCONVEX DOMAINS IN
STEIN MANIFOLDS

ANDREW PALM

Introduction.

The integral formula of Cauchy holds a central position in complex analysis
of one variable and its direct generalization to polydiscs is important in establish-
ing the elementary properties of analytic functions of several complex variables,
e.g., the nonexistence of isolated singularities in C*, n > 2. In the 1930’s
Bergman and Weil [2, 22] developed a generalization of the Cauchy formula
for analytic polyhedra, and in the early 1940’s Bochner and Martinelli [3, 15]
produced a general integral formula for functions holomorphic on piecewise-
smoothly bounded domains in C". Later in 1961 Norguet [17] proved a general
integral formula (based on the Cauchy-Fantappi¢ kernel introduced by Leray
[13]) which included the above formulas as special cases. Finally in 1970 Ramirez
[19] and Henkin [9, 10] gave integral representations with holomorphic kernels
on strictly pseudoconvex domains in C". These allowed Grauert-Lieb [7] and
Henkin [10] to solve the d-equation for (0, 1)-forms with uniform bounds on
strictly pseudoconvex domains in C". That is, if D is a strictly pseudoconvex
domain in C" with smooth boundary and if f is a uniformly bounded and 9-
closed, C”, (0, 1)-form on D, then there exists a uniformly bounded C” function w
on D with du = f. Others extended these results to (0, ¢)-forms and L’ and
Holder estimates. Under a local version of the Grauert-Lieb method, Kerzman
[12] generalized these results to strictly pseudoconvex domains with smooth
boundary in Stein manifolds. More recently Stout [21] has proved an integral
formula for holomorphic functions on a strictly pseudoconvex domain in a
codimension-one submanifold of C".

In this paper we derive integral formulas for d-closed, C”, (0, ¢)-forms on a
strictly pseudoconvex domain D in a Stein manifold such that the holomorphic
tangent bundle of the manifold is stably trivial over a neighborhood of D. Using
these formulas we then solve the d-equation with uniform bounds for (0, ¢)-forms
on such domains D. This is a special case of the results of Kerzman, but our
method appears to be more direct since it does not require the patching together
of local solutions.
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