A PATH LIFTING CONSTRUCTION FOR DISCRETE OPEN MAPPINGS WITH APPLICATION TO QUASIMEROMORPHIC MAPPINGS

SEPPO RICKMAN

1. Introduction. The purpose of this paper is to show that given a discrete open mapping and a sphere separating two points omitted by the mapping there exists a family of paths lying in the sphere which has a significant lower bound for its modulus in terms of multiplicity and whose paths lift to "long" paths. The motivation for such a construction arises from the theory of quasiregular mappings where it can be used to estimate the growth of multiplicities. Recently O. Martio [2] applied the construction to prove that a k-periodic quasiregular mapping of the euclidean n-space R^{n} into itself cannot have a finite multiplicity in a period strip if $k \leq n-2$.
2. Notation and terminology. We shall mostly use the same notation and terminology as in [3, 4]. For $x \in R^{n}$ we write $x=x_{1} e_{1}+\cdots+x_{n} e_{n}$ where e_{1}, \cdots, e_{n} is the standard orthonormal basis in R^{n}. For a set $A \subset R^{n}$ the closure \bar{A}, the boundary ∂A, and the complement $C A$ are all taken with respect to $\bar{R}^{n}=R^{n} \cup\{\infty\}$. The spherical (chordal) metric in \bar{R}^{n} is denoted by q. The inner product of $x, y \in R^{n}$ is $(x \mid y)$. For $x \in R^{n}$ and $r>0$ we set

$$
\begin{aligned}
B^{n}(x, r) & =\left\{y \in R^{n}| | y-x \mid<r\right\} \\
S^{n-1}(x, r) & =\partial B^{n}(x, r) \\
B^{n}(r) & =B^{n}(0, r), \quad S^{n-1}(r)=S^{n-1}(0, r)
\end{aligned}
$$

By ω_{n-1} we denote the $(n-1)$-dimensional measure of $S^{n-1}(1)$.
Let $n \geq 2$ and let $f: G \rightarrow \bar{R}^{n}$ be a continuous map of a domain G in R^{n}. If $A \subset G, y \in \bar{R}^{n}$, and $B \subset \bar{R}^{n}$, we define the following multiplicities (possibly ∞):

$$
\begin{aligned}
N(y, f, A) & =\operatorname{card} f^{-1}(y) \cap A, \\
N(B, f, A) & =\sup _{y \in B} N(y, f, A), \\
N(f, A) & =N\left(\bar{R}^{n}, f, A\right) .
\end{aligned}
$$

If f is discrete and open, every $x \in G$ has arbitrarily small normal neighborhoods U, i.e. $\bar{U} \subset G, f \partial U=\partial f U$, and $U \cap f^{-1}(f(x))=\{x\}$. Such neighborhoods can be chosen to be the x-component $U(x, f, r)$ of $f^{-1} B^{n}(f(x), r)$ for small $r>0$ if $f(x) \neq \infty[3,2.9]$.

Received April 14, 1975.

