A PATH LIFTING CONSTRUCTION FOR DISCRETE OPEN MAPPINGS WITH APPLICATION TO QUASIMEROMORPHIC MAPPINGS

SEPPO RICKMAN

1. Introduction. The purpose of this paper is to show that given a discrete open mapping and a sphere separating two points omitted by the mapping there exists a family of paths lying in the sphere which has a significant lower bound for its modulus in terms of multiplicity and whose paths lift to "long" paths. The motivation for such a construction arises from the theory of quasiregular mappings where it can be used to estimate the growth of multiplicities. Recently O. Martio [2] applied the construction to prove that a k-periodic quasiregular mapping of the euclidean n-space \mathbb{R}^n into itself cannot have a finite multiplicity in a period strip if $k \leq n - 2$.

2. Notation and terminology. We shall mostly use the same notation and terminology as in [3, 4]. For $x \in \mathbb{R}^n$ we write $x = x_1e_1 + \cdots + x_ne_n$ where e_1, \cdots, e_n is the standard orthonormal basis in \mathbb{R}^n . For a set $A \subset \mathbb{R}^n$ the closure \overline{A} , the boundary ∂A , and the complement $\mathbb{C}A$ are all taken with respect to $\overline{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$. The spherical (chordal) metric in $\overline{\mathbb{R}}^n$ is denoted by q. The inner product of $x, y \in \mathbb{R}^n$ is $(x \mid y)$. For $x \in \mathbb{R}^n$ and r > 0 we set

$$B^{n}(x, r) = \{y \in \mathbb{R}^{n} \mid |y - x| < r\},\$$

$$S^{n-1}(x, r) = \partial B^{n}(x, r),\$$

$$B^{n}(r) = B^{n}(0, r), \quad S^{n-1}(r) = S^{n-1}(0, r).$$

By ω_{n-1} we denote the (n-1)-dimensional measure of $S^{n-1}(1)$.

Let $n \ge 2$ and let $f: G \to \overline{R}^n$ be a continuous map of a domain G in \mathbb{R}^n . If $A \subset G, y \in \overline{R}^n$, and $B \subset \overline{R}^n$, we define the following multiplicities (possibly ∞):

$$N(y, f, A) = \operatorname{card} f^{-1}(y) \cap A$$
$$N(B, f, A) = \sup_{y \in B} N(y, f, A),$$
$$N(f, A) = N(\bar{R}^n, f, A).$$

If f is discrete and open, every $x \in G$ has arbitrarily small normal neighborhoods U, i.e. $\overline{U} \subset G$, $f \partial U = \partial f U$, and $U \cap f^{-1}(f(x)) = \{x\}$. Such neighborhoods can be chosen to be the x-component U(x, f, r) of $f^{-1}B^n(f(x), r)$ for small r > 0 if $f(x) \neq \infty$ [3, 2.9].

Received April 14, 1975.