THE CONNECTION BETWEEN THE LAGRANGE AND MARKOFF SPECTRA

T. W. CUSICK

1. Introduction. For any real number θ, define $\mu(\theta)$ by

$$
\mu(\theta)^{-1}=\lim _{q \rightarrow \infty} \inf |q(q \theta-p)|
$$

where p and q are integers. The set of values taken by $\mu(\theta)$ as θ varies is called the Lagrange spectrum. For any indefinite quadratic form $f(x, y)$ with determinant 1 , define $m(f)$ by

$$
m(f)^{-1}=\inf |f(x, y)|,
$$

where x, y runs through all pairs of integers not both zero. The set of values taken by $m(f)$ as f varies is called the Markoff spectrum. The purpose of this paper is to study the relationship between the two spectra.

It is well known (for instance, see Perron [12]) that the two spectra can also be defined in terms of sequences of positive integers, as follows: Let S denote a doubly infinite sequence $\cdots, a_{-i}, \cdots, a_{-1}, a_{0}, a_{1}, \cdots, a_{i}, \cdots$ of positive integers and define for each integer i

$$
\lambda_{i}(S)=\left[a_{i}, a_{i+1}, \cdots\right]+\left[0, a_{i-1}, a_{i-2}, \cdots\right]
$$

(here we use the customary notation $\left[c_{0}, c_{1}, c_{2}, \cdots\right]$ for the simple continued fraction whose partial quotients are $c_{0}, c_{1}, c_{2}, \cdots$, where c_{0} is an integer and the $c_{i}, i \geq 1$, are positive integers). Further define $L(S)=\lim \sup \lambda_{i}(S)$ and $M(S)=\sup \lambda_{i}(S)$, where the lim sup and sup are both taken over all integers i. As S runs through all possible doubly infinite sequences of positive integers, the set of values taken by $L(S)$ or $M(S)$ is, respectively, the Lagrange or the Markoff spectrum. We shall consider the two spectra from this point of view throughout this paper.

From now on we let \mathbf{L} and \mathbf{M} denote, respectively, the Lagrange and Markoff spectra.

It is known and easy to prove that \mathbf{M} contains \mathbf{L}. Apparently the first published proofs of this were by Vinogradov, Delone and Fuks [5] and by Vinogradov and Delone [6].

In fact, \mathbf{M} strictly contains \mathbf{L}. This was first proved by Freiman [7], who gave an explicit example of a number in \mathbf{M} but not in \mathbf{L}.

Thus in order to elucidate the connection between \mathbf{L} and \mathbf{M}, it is necessary to describe the conditions under which a number can be in \mathbf{M} but not in \mathbf{L}.

Received February 6, 1975.

