INVARIANT SUBSPACES FOR ALGEBRAS GENERATED BY STRONGLY REDUCTIVE OPERATORS

CONSTANTIN APOSTOL AND CHE-KAO FONG

Let *H* be a complex separable Hilbert space and *T* be a bounded linear operator on *H*. Denote by $\alpha(T)$ the uniformly closed, inverse-closed algebra generated by $\{I, T\}$ and by \tilde{T} the coset determined by *T* in the Calkin algebra. The operator *T* will be called *strongly reductive* (see [6]) if for any $\epsilon > 0$ there exists $\delta > 0$ such that the implication

 $||PTP - TP|| < \delta = > ||TP - PT|| < \epsilon$

holds for all orthogonal projections P.

Recall that an algebra α of operators acting on H is called intransitive if there exists a proper subspace invariant for all operators belonging to α .

The aim of this note is to prove the following:

THEOREM. If T is strongly reductive and if $\mathfrak{A}(T)$ contains an operator S such that $||S|| \neq ||\tilde{S}||$, then $\mathfrak{A}(T)$ is an intransitive algebra.

Our theorem is similar to a result of Meyer-Nieberg [7] or C. Pearcy and N. Salinas [8], which could be stated as follows: If T is quasitriangular (in the sense of Halmos [5]) and if $\alpha(T)$ contains a compact operator S, then $\alpha(T)$ is an intransitive algebra.

As we shall see below, the assumption that T is strongly reductive implies that T is quasitriangular, but on the other hand, we allow S to be non-compact. Also we employ the similar techniques used by Arveson-Feldman [3], Meyer-Nieberg [7], and Pearcy-Salinas [8]; namely, the approximation approach initiated by Aronszajn and Smith [2].

In order to prove our theorem we shall need the following:

PROPOSITION. Suppose that T is quasitriangular and that $\mathfrak{A}(T)$ contains an operator S such that $||S|| \neq ||\tilde{S}||$. Then there exists a sequence $\{P_n\}_{n=1}^{\infty}$ of finite-rank projections such that:

1. $||(I - P_n)LP_n|| \rightarrow 0$ for every L in $\alpha(T)$,

2. $P_n \xrightarrow{w} A$ (i.e. P_n weakly tends to A),

and

3. A is not a scalar multiple of I.

Proof. Let *E* be the spectral measure of $(S^*S)^{1/2}$. Fix some $\rho > 0$ such that $||\tilde{S}|| < \rho < ||S||$. Put $S_{\rho} = SE([\rho, ||S||])$. It is easy to see that $||S|| \in \sigma_p\{(S^*S)^{1/2}\}, S_{\rho}$ is finite-rank and $S^*S_{\rho} = S_{\rho}^*S_{\rho}$. Fix a positive number

Received March 10, 1975.