THE CAUCHY PROBLEM WITH POLYNOMIAL GROWTH CONDITIONS FOR PARTIAL DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS

R. B. MELROSE

Suppose P(D) is a linear partial differential operator with constant coefficients in \mathbb{R}^n and $H_N = \{x \in \mathbb{R}^n ; x.N \ge 0\}$, where $N \in \mathbb{R}^n \setminus \{0\}$, is a half-space. In [4], Hörmander has obtained conditions on the zeros of the characteristic polynomial P of P(D) equivalent to the solvability of the distributional Cauchy problem for P(D) with respect to H_N . The operators satisfying these conditions are said to be evolution operators, with respect to H_N . Thus, if $f \in \mathcal{E}'(\mathbb{R}^n)$ has support in a half-space H_N with respect to which P(D) is an evolution operator, there exists at least one distribution $u \in \mathfrak{D}'(\mathbb{R}^n)$ with supp $(u) \subset H_N$ such that P(D)u = f. In general each such u has exponential growth in some direction parallel to the hyperplane ∂H_N . Here we shall find conditions on the zeros of P equivalent to the existence of a forward fundamental solution with polynomial growth.

DEFINITION. A partial differential operator P(D) with constant coefficients on \mathbb{R}^n is said to be a temperate-evolution operator with respect to the half-space H_N if it has a fundamental solution $E \in \mathfrak{D}'(\mathbb{R}^n)$ satisfying

(a) supp $(E) \subset H_N$

(b) there exists a $c \in \mathbf{R}$ such that $\exp(-cx.N)E(x) \in S'(\mathbf{R}^n)$.

It is clear from the results in [2] that such a 'temperate' forward fundamental solution cannot have, in general, the maximal regularity property which is known to hold for some forward fundamental solution (that is one with support in H_N).

If $T \in \mathbb{R}$ put $H_N(T) = \{x \in \mathbb{R}^n ; x.N \ge T\}$ and let $S'(H_N(T))$ and $\mathfrak{D}'(H_N(T))$ denote, respectively, the closed subspaces of $S'(\mathbb{R}^n)$ and $\mathfrak{D}'(\mathbb{R}^n)$ of distributions supported by $H_N(T)$. Any P(D) defines a continuous map of $S'(H_N(T))$ into itself and so, if T > 0, defines a map of $S'(H_N)/S'(H_N(T))$ into itself.

THEOREM. If P(D) is a partial differential operator with constant coefficients on \mathbb{R}^n , and $N \in \mathbb{R}^n \setminus \{0\}$ the following three conditions are equivalent.

- (i) P(D) is a temperate-evolution operator with respect to H_N .
- (ii) There exists a T > 0 and a compact set $K \subset H_N \setminus H_N(T)$ with non-empty interior such that

$$C_0^{\infty}(K) \subset P(D)\{\mathfrak{S}'(H_N)/\mathfrak{S}'(H_N(T))\}.$$

Received April 1, 1975.