ALMOST ISOMETRIES OF BANACH SPACES AND MODULI OF RIEMANN SURFACES II

RICHARD ROCHBERG

1. Introduction and summary. Let S denote the set of compact bordered Riemann surfaces. For \bar{S} in S denote the border of \bar{S} by $\partial \bar{S}$ and the interior of \bar{S} by S. For \bar{S} in S, $R(\bar{S})$, the Riemann space of \bar{S} , is the space of conformal equivalence classes of elements of S homeomorphic to \bar{S} . We will generally denote an element of $R(\bar{S})$ by a member of the equivalence class. The moduli topology on $R(\bar{S})$ is the topology induced by the Teichmüller metric, $D(\bar{S}_1, \bar{S}_2) = \inf \{ \log K : \text{there is a quasiconformal homeomorphism of } S_1 \text{ onto } S_2 \text{ with maximal dilatation } K \}$. (For a discussion of quasiconformal maps see Ahlfors [1]. For a discussion of the Teichmüller metric in this context see Earle [4].)

For \bar{S} in 8 let A(S) be the supremum normed Banach algebra of functions continuous on \bar{S} and analytic on S. For \bar{S}_1 and \bar{S}_2 in 8 let $L(A(S_1), A(S_2))$ be the set of continuous invertible linear maps of $A(S_1)$ onto $A(S_2)$. For T in $L(A(S_1), A(S_2))$ let $c(T) = ||T|| \ ||T^{-1}||$. Note that c(T) can reasonably be thought of as the dilatation of the quasiconformal homeomorphism T. Define a distance between elements of 8 by $d(\bar{S}_1, \bar{S}_2) = \inf \{ \log c(T) : T \in L(A(S_1), A(S_2)) \}$.

In a previous paper [7] the author proved the following theorem.

THEOREM 1. Let \bar{S} be a planar element of S. d is a metric on $R(\bar{S})$. The topology induced by this metric is the moduli topology.

In this paper Theorem 1 is extended to non-planar surfaces. The following is proved.

THEOREM 2. Let \bar{S} be an element of S. d is a metric on $R(\bar{S})$. The topology induced by this metric is the moduli topology.

The previous paper with this title [8] contains some of the component results needed to establish Theorem 2. In particular it is shown that d is a metric and the topology induced by d is coarser than the moduli topology. Thus, to complete the proof of Theorem 2 it suffices to prove the following.

Theorem 3. Let \bar{S} be an element of S and \bar{S}_1 , \bar{S}_2 , \cdots elements of S homeomorphic to \bar{S} . If $\lim_{n\to\infty}d(\bar{S}_n$, $\bar{S})=0$ then $\lim_{n\to\infty}D(\bar{S}_n$, $\bar{S})=0$.

Sections 2, 3, and 4 contain preliminary results. The proof of Theorem 3 is in Section 5. Section 6 contains notes and comments.

Received March 27, 1974. This research was supported in part by National Science Foundation Grant GP 34628.