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1. Introduction. A function f(z) analytic in the unit disc Izl < 1 is said
to belong to the Hardy space H, 0 < p < o, if

,(f, r) 1

remains bounded as r -+ 1. The space of bounded analytic functions is called
H. It has been known for a long time that the zeros [zk} of nontrivial H
functions are completely characterized by the Blaschke condition

Z: (1 Iz, I) <
k--1

In particular, all of the H spaces admit the same zero sets. (See, e.g., [1].)
It is a problem of long standing to describe the zero sets of analytic functions

J for which IJ(z)I is integrable with respect to the area measure dA 1/r dx dy
over the disc. Such a function is said to belong to the Bergman space A,
and we define its A norm by the equation

lf 1," f ]f(z) ]" dA
zl<l

I is eler h H C A", and ha I A if nd only if

{91Z(l, r)} dr < .
For convenience, we define A H’. It should be noted that A C A if
p < q. One can show without difficulty that A is a norm-closed subspace of
the L space constructed over the disc with respect to area measure. In par-
ticular, A is a Banach space for 1 _< p _< .

In this paper, we obtain some results on the structure of the zero sets of A
functions. We show that these "A zero sets" are quite different from the
Blaschke sequences, or H zero sets. Roughly, our main theorems are as follows.

THEOREM 1. If 0 < p < q <_ =,, then there is an A zero set which is not an
A zero set.

THEOREM 2. I] 0 < p < then the union o/two A zero sets is not in general
an A zero set.
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