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Let (X, A) be a ringed space with X hausdorff and D be a domain (open and
connected) in X. Let A be the open unit disc in C. Let B = B(D) be the
algebra of bounded A-holomorphic functions on D and B, be the family of
A-holomorphic functions f of D into A with sup,ep [f@)| = ||fllo = 1. We
define the Carathéodory distance ¢ = ¢p as follows: For z, y & D
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where z; , 2, € A. For g € B, and 2’ & D set
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where

B, = {fe B, ;f(x) = 0}.

This distance ¢ is a pseudo-distance on D and c¢ is a distance if and only if
B(D) separates the points of D. We note that if B(D) is a maximum modulus
algebra then the distance ¢ between two points of D is always finite and is a
continuous function of D into [0, ). D is a complete domain if every closed
ball A(p, r) = {¢ € D;c(p,2) <7}, p E Dandr > 0, is compact. D is bound-
edly holomorphic convex if for every compact subset K of D, Ky = {z € D;
lf(@)] < ||f||x for all f € B} is compact. D is a domain of bounded holomorphy
if there is a function in B(D) which can not be continued holomorphically
beyond D.

A point p in the closure D of D in X is called a point of finite distance if for
each z € D, z # p, there exists a neighborhood U of p in X and a finite positive
number M such that c(z, y) < M for ally € U,D. A point p € D which is not
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