ON THE EXISTENCE OF NON-METRIZABLE HEREDITARILY LINDELÖF SPACES WITH POINT-COUNTABLE BASES

FRANKLIN D. TALL

In [P] Ponomarev proved that if there is a Souslin space (i.e. a non-separable linearly ordered topological space satisfying the countable chain condition) then there is a hereditarily Lindelöf regular T_1 space with a point-countable base which is not metrizable. (See also [B].) Ponomarev asked whether such an example could be produced without assuming the existence of a Souslin space. We do not answer his question, but translate the problem into a question of the existence of a certain family of subsets of ω_1 , as well as relating it to the normal Moore space problem.

THEOREM 1. There is a hereditarily Lindelöf regular T_1 space with a pointcountable base which is not metrizable if and only if there is an uncountable family \mathfrak{B} of subsets of ω_1 satisfying the following conditions.

- (1) If $\mathfrak{B}' \subset \mathfrak{B}$ is uncountable, $\cap \mathfrak{B}' = \emptyset$.
- (2) For each $\mathfrak{B}' \subset \mathfrak{B}$, there is a countable $\mathfrak{B}'' \subset \mathfrak{B}'$ such that $\bigcup \mathfrak{B}'' = \bigcup \mathfrak{B}'$.
- (3) For every distinct α and β in ω_1 , there is $B \in \mathfrak{G}$ with $\alpha \notin B$, $\beta \in B$.

(4) For every $\alpha \in \omega_1$, and every $B \in \mathfrak{G}$ containing α , there is a $C \in \mathfrak{G}$ such that $B \supset \bigcap \{\omega_1 - D : D \in \mathfrak{G}, D \cap C = \emptyset\}$, and $\alpha \in C$.

(5) If $\alpha \in B \cap C$, B, $C \in \mathfrak{G}$, there is $D \in \mathfrak{G}$ such that $\alpha \in D \subset B \cap C$.

It should be pointed out that the existence of a Souslin space is consistent with the axioms of set theory [J], [Te], [Je]. In [ST] Martin's Axiom is introduced and it is shown that Martin's Axiom plus $2^{\kappa_0} > \aleph_1$ is consistent with the axioms of set theory and implies there is no Souslin space. In [T₄] I proved, under the assumption of Martin's Axiom plus $2^{\kappa_0} > \aleph_1$, that if a hereditarily Lindelöf regular T_1 space with a point-countable base is the intersection of fewer than 2^{κ_0} open sets in its Stone-Čech compactification, then it is metrizable. It follows from the main theorem in [F] that paracompact—a fortiori Lindelöf regular T_1 spaces with point-countable bases which are G_{δ} 's in their Stone-Čech compactifications are metrizable. ("Absolute G_{δ} 's" are *p*-spaces.) Šapirovskiĭ [Š₂] has shown that countable chain condition absolute G_{δ} 's with point-countable bases are metrizable.

Received October 5, 1973. Final version received December 10, 1973. The preparation of this paper was assisted by grant A-7354 of the National Research Council of Canada.

AMS 1970 subject classifications. Primary 02K05, 54A25, 54E35, 54F05; Secondary 02K25, 04A30, 54D20, 54E30.

Key words and phrases. Souslin space, hereditarily Lindelöf, point-countable base, 0-dimensional, normal Moore space, set-theoretic consistency.