ON A THEOREM OF TORD HALL

W. K. HAYMAN

The theorem referred to in the title is the following.

THEOREM A. [1] Suppose that u(z) is subharmonic (s.h.) in the half plane P given by x > 0, where z = x + iy, that $u(z) \le 0$ in P, and that

(1)
$$\inf_{|z|=r} u(z) \leq -M, \qquad 0 < r < \infty.$$

Then

$$(2) u(z) \leq -MA_0\left(\frac{1}{2} - \frac{|\theta|}{\pi}\right)$$

if
$$|\arg z| = |\theta| < \pi/2$$
, where $A_0 = 4\pi/(\pi^2 + 8) = .705 \cdots$.

It is tempting to conjecture that this result might hold with $A_0 = 1$. The corresponding inequality would be sharp as is shown, for instance, by

$$u(re^{i\theta}) = \frac{M(2\theta - \pi)}{2\pi}, \qquad -\frac{\pi}{2} < \theta < \frac{\pi}{2},$$

which satisfies the hypotheses of Theorem A and gives equality in (2) with $A_0 = 1$ for $\theta > 0$.

We show nevertheless that such a conjecture would be false by means of the following.

Example. There exists a function u(z) satisfying the hypotheses of Theorem A and such that $u(x) > -\frac{1}{2}M$ for all positive x.

We choose c = 90 and a = 1/100 so that

(3)
$$\frac{1}{3}c \log c > 1/a > c$$
.

Let ϵ be a small positive number and choose $\eta=c\epsilon$, $\zeta=ie^{-i\eta}$, and set $z=re^{i\theta}=x+iy$, where $|\theta|<\pi/2$ and

$$u(z)$$

$$= -\frac{M}{\pi} \left\{ \left(\theta + \frac{\pi}{2} \right) + a \log \left| \frac{z + \overline{\zeta}}{z - \zeta} \right| - \tan^{-1} \left(\frac{y - 1 + \epsilon}{x} \right) - \tan^{-1} \left(\frac{1 + \epsilon - y}{x} \right) \right\}$$

$$= -\frac{M}{\pi} \left\{ \theta + a \log \left| \frac{z + \overline{\zeta}}{z - \zeta} \right| + \tan^{-1} \left(\frac{|z - i|^2 - \epsilon^2}{2\epsilon x} \right) \right\}.$$

Then u(z) has on the imaginary axis boundary values -M for y > 0 except for $|y - 1| \le \epsilon$ and boundary values 0 for y < 0 and for $|y - 1| < \epsilon$. Also

Received September 24, 1973.