ON CENTRALLY SPLITTING

ROBERT L. BERNHARDT

Let 3 be a torsion-torsionfree (TTF) class, in the sense of Jans [5], in the category of left modules over a ring R. Then 3 is both a torsion class for some torsionfree class \mathfrak{F} , and 3 is a torsionfree class for a torsion class \mathfrak{C} . After Kurata [6], we shall speak of the TTF *theory* (\mathfrak{C} , \mathfrak{I} , \mathfrak{F}) in this situation.

In this note we are interested in when the TTF theory ($\mathfrak{C}, \mathfrak{I}, \mathfrak{F}$) is centrally splitting. Several equivalent conditions for centrally splitting are known [3]; three in particular are that $\mathfrak{C} = \mathfrak{F}$, that the C-torsion submodule R_c of R is generated by a central idempotent, and that R is the direct sum of its two torsion submodules, $R = R_c \bigoplus R_t$. We present here two more equivalences for centrally splitting; the second result (Theorem 3) is for an arbitrary hereditary torsion class and so is somewhat stronger than usual. Sandwiched between these facts is an investigation of the question: If the 3-torsion submodule R_t of R is generated by a central idempotent, then is ($\mathfrak{C}, \mathfrak{I}, \mathfrak{F}$) centrally splitting? The answer is no, in general; but it is yes if \mathfrak{I} is the smallest torsion class containing R_t .

In the category $_{R}\mathfrak{M}$ of left modules over a ring R, a class 3 is called a *torsion* class provided 3 is closed under homomorphic images, extensions, and direct sums. We call a torsion class *hereditary* if it is also closed under submodules and *stable* if it is closed under injective envelopes. The torsionfree class \mathfrak{F} associated with the torsion class 3 is $\mathfrak{F} = \{M \ \mathfrak{e} \ _{R}\mathfrak{M} \mid \text{Hom} (T, M) = 0 \text{ for all } T \ \mathfrak{e} 3\}$. The torsion class 5 is hereditary if and only if \mathfrak{F} is closed under injective envelopes, and the hereditary torsion class is a TTF class if and only if it is closed under direct products. These definitions and results are due to Dickson [4] and Jans [5]. We prefer to refer the uninitiated reader to these sources and to the paper [3] for the fundamental facts on torsion and TTF theories rather than to try to condense that material here.

PROPOSITION 1. Let $(\mathfrak{C}, \mathfrak{I}, \mathfrak{F})$ be a TTF theory. Then \mathfrak{I} is centrally splitting if and only if \mathfrak{C} is closed under essential extensions and R_{ι} is a (module) direct summand of R.

Proof. We need only consider the case where \mathfrak{C} is closed under essential extensions and $R = R_{\iota} \bigoplus R'$. Then $R/R' \mathfrak{e} \mathfrak{I}$ so that $R_{\varepsilon} \leq R'$. But $R' \mathfrak{e} \mathfrak{I}$; hence, if $0 \neq x \mathfrak{e} R'$, then $0 \neq R_{\varepsilon} x \leq R_{\varepsilon}$. Thus $Rx \cap R_{\varepsilon} \neq 0$ so that R' is an essential extension of R_{ε} . Thus $R_{\varepsilon} = R'$ so that \mathfrak{I} is centrally splitting.

Let $(\mathfrak{C}, \mathfrak{I}, \mathfrak{F})$ be a TTF theory. If $R_{\mathfrak{C}}$ is simply a module direct summand of R, then \mathfrak{I} need not be centrally splitting. An example may be constructed in the ring $R = UT_2(K)$ of 2 by 2 upper triangular matrices over a field K. Let

Received August 16, 1973.