A GENERAL POISSON LIMIT THEOREM OF PROBABILITY THEORY

JANOS GALAMBOS

1. Summary. Let A_1, A_2, \dots, A_n be events on a given probability space and put $S_k(n) = \sum P(A_{i_1}A_{i_2} \cdots A_{i_k}), k \geq 1$, where the summation is for all choices $1 \leq i_1 < i_2 < \dots < i_k \leq n$ of the subscripts. Denoting by $p_k(n) =$ $S_k(n)/\binom{n}{k}$ we observe that the numbers $p_1(n), p_2(n), \dots, p_n(n)$ can be associated with a finite sequence C_1, C_2, \dots, C_n of exchangeable events so that $p_k(n) = P(C_1C_2 \cdots C_k), k \geq 1$. The main result is that if, for n large, C_1, C_2, \dots, C_n can be extended into an infinite sequence of exchangeable events, then the sole assumptions $S_1(n) \to a > 0$, finite, and $S_2(n) \to \frac{1}{2}a^2$ imply that the limit distribution of the number ν_n of A_1, A_2, \dots, A_n which occur is Poisson with parameter a. This part is deduced from D. G. Kendall's limit theorem for exchangeable events. Applications are made to extreme value distributions by choosing $A_i = \{X_i \geq x\}$ for a given sequence X_1 , X_2, \dots, X_n of random variables. The example given shows an essentially distinct feature of our limit result from the case of independent random variables and its known extensions.

2. Comparison with exchangeable events. For an arbitrary sequence A_1, A_2, \dots, A_n of events we put

(1)
$$S_k(n) = \sum P(A_{i_1}A_{i_2}\cdots A_{i_k}), \qquad k \ge 1,$$

where the summation is over all k-tuples

$$(i_1, i_2, \cdots, i_k)$$
 with $1 \le i_1 < i_2 < \cdots < i_k \le n$.

Define

(2)
$$p_k(n) = S_k(n) / {\binom{n}{k}}.$$

Further, let ν_n be the number of the events A_1 , A_2 , \cdots , A_n which occur. Our aim is to show that the distribution of ν_n can be determined from the special case when the A's are replaced by exchangeable events. We recall that a sequence C_1 , C_2 , \cdots , C_n of events is called exchangeable if for any choice of the integers $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ the probabilities

$$\alpha_k = P(C_{i_1}C_{i_2}\cdots C_{i_k})$$

Received February 17, 1973.