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1. Introduction. The g-analogs for Gauss’s summation of ,F,[a, b; ¢; 1] and
Saalschutz’s summation of 3Fsfa, b, —n;c,a + b — ¢ — n + 1; 1] are well known,
namely, E. Heine [8; p. 107, Equation (6)] showed that
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(See also [12; p. 97, Equation (3.3.2.2)].) F. H. Jackson [9; p. 145] showed that
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The g-analog of Dixon’s summation of ;F,[a, b, ¢c;1 +a — b, 1 4+ a — ¢c; 1] was
more difficult to find, and indeed only a partial analog is true; namely, W. N.
Bailey [5] and F. H. Jackson [10; p. 167, Equation (2)] proved that if a = ¢~*"
where n is a positive integer, then
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There are three other well-known summations for the .F, series, namely,
Kummer’s theorem [12; p. 243, Equation (III. 5)]
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Gauss’s second theorem [12; p. 243, Equation III. 6)]
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