RING TOPOLOGIES ON THE QUOTIENT FIELD OF A DEDEKIND DOMAIN

J. HEINE AND SETH WARNER

Let D be a Dedekind domain that is not a field, and let K be the quotient field of D. A ring topology 5 on K is *D-linear* if the open *D*-submodules form a fundamental system of neighborhoods of zero for 5. Let P be the set of all nonzero prime ideals of D. We recall that the fractionary ideals of K are precisely the finitely generated D-submodules and that a nonzero fractionary ideal \mathfrak{a} has the unique factorization

$$\mathfrak{a} = \prod_{\mathfrak{p} \in P} \mathfrak{p}^{n_{\mathfrak{p}}(\mathfrak{a})}$$

where $n_{\mathfrak{p}}(\mathfrak{a}) \in \mathbb{Z}$ and $n_{\mathfrak{p}}(\mathfrak{a}) = 0$ for all but finitely many $\mathfrak{p} \in P$. Moreover, if \mathfrak{a} and \mathfrak{b} are nonzero fractionary ideals, then

$$n_{\mathfrak{p}}(\mathfrak{a} + \mathfrak{b}) = \min \{n_{\mathfrak{p}}(\mathfrak{a}), n_{\mathfrak{p}}(\mathfrak{b})\},\$$
$$n_{\mathfrak{p}}(\mathfrak{a}\mathfrak{b}) = n_{\mathfrak{p}}(\mathfrak{a}) + n_{\mathfrak{p}}(\mathfrak{b}),\$$

and $\mathfrak{a} \subseteq \mathfrak{b}$ if and only if $n_{\mathfrak{p}}(\mathfrak{a}) \geq n_{\mathfrak{p}}(\mathfrak{b})$ for all $\mathfrak{p} \in P$ [4; pp. 25-26]. For each $\mathfrak{p} \in P$ we denote the \mathfrak{p} -adic valuation by $v_{\mathfrak{p}}$. Thus for each nonzero $x \in K$, $v_{\mathfrak{p}}(x) = n_{\mathfrak{p}}(Dx)$.

Our goal is to describe all nondiscrete *D*-linear ring topologies on *K* and to characterize certain classes of such topologies: those that are locally bounded, are field topologies, have a fundamental system of neighborhoods of zero consisting of subrings, etc. In particular, we shall obtain the Correl-Jebli theorem that a nondiscrete *D*-linear ring topology \Im is a field topology if and only if \Im is the supremum of p-adic topologies.

1. The D-linear ring topology determined by a submodule. A nonzero fractionary ideal \mathfrak{a} is completely determined by the function $\mathfrak{p} \mapsto n_{\mathfrak{p}}(\mathfrak{a})$ from P into \mathbf{Z} , in that nonzero fractionary ideals \mathfrak{a} and \mathfrak{b} are identical if $n_{\mathfrak{p}}(\mathfrak{a}) = n_{\mathfrak{p}}(\mathfrak{b})$ for all $\mathfrak{p} \in P$. More generally, a nonzero D-submodule V of K is similarly determined by the function φ_V from P into $\mathbf{Z} \cup \{-\infty\}$ defined by

$$\varphi_{\mathbf{v}}(\mathfrak{p}) = \inf \{ v_{\mathfrak{p}}(x) : x \in V \}$$

[4; p. 91, Exercise 3]. For completeness we shall give a proof.

THEOREM 1. Let $\mathfrak{M}(D)$ be the lattice of all nonzero D-submodules of K, ordered by \subseteq , and let $\mathfrak{F}(D)$ be the lattice of all functions f from P into $\mathbf{Z} \cup \{-\infty\}$ such that $f(\mathfrak{p}) \leq 0$ for all but finitely many $\mathfrak{p} \in P$, ordered by \geq . Then $V \mapsto \varphi_V$ is a

Received March 20, 1973.