STRONG VARIATION FOR THE SAMPLE FUNCTIONS OF A STABLE PROCESS

BERT FRISTEDT AND S. JAMES TAYLOR

1. Introduction. Given a function $f: [0, s] \to R^d$ and a monotone increasing $\psi: R^+ \to R^+$ with $\psi(0) = 0$, we define the strong ψ -variation of f on [0, t] by

(1)
$$V_{\psi}^{*}(f; 0, t) = \sup_{\pi} \sum_{t_{i} \in \pi} \psi(|f(t_{i}) - f(t_{i-1})|),$$

where the supremum is taken over all finite partitions $\pi = \{0 = t_0 < \cdots < t_m = t\}$ of [0, t]. Given a fixed f, one can ask, "For which functions ψ is $V_{\psi}^*(f; 0, t)$ finite?" In the present paper we are interested in the case where f is the sample path of a process with stationary independent increments (Lévy process) taking values in \mathbb{R}^d . That is, we replace f by $X = X(\cdot, \omega)$ for a fixed ω in the underlying probability space, $X(s, \omega)$ being a Lévy process, and we ask, "For which functions ψ is $V_{\psi}^*(X; 0, t)$ finite with probability one?"

In [2] Blumenthal and Getoor define a numerical index $\beta \in [0, 2]$ for a Lévy process and show that if $\psi(s) = s^{\gamma}$, then $\gamma < \beta$ implies $V_{\psi}^{*}(X; 0, t) = \infty$ a.s. and $\beta < (\gamma \land 1)$ implies $V_{\psi}^{*}(X; 0, t) < \infty$ a.s. provided that the process has no drift. The gap in knowledge about the s^{γ} -variation of Lévy processes has only recently been filled by Monroe [12] who uses the method of subordination to Brownian motion and by Bretagnolle [3] who truncates the Lévy measure ν of the process (see Section 2 for definitions) and then shows that $E\{V_{\psi}^{*}(X; 0, t)\}$ $< \infty$ when $\int_{-1}^{+1} \psi(|x|)\nu(dx) < \infty$ and ψ is sufficiently smooth and not too close to $\psi(s) = s^{2}$. Our approach and methods are different from those of Bretagnolle; we are able to deal with arbitrary variation functions ψ , but we require smoothness conditions on the Lévy measure ν . To simplify the writing we give the details for the class of stable processes of index α , $0 < \alpha < 2$, and then we indicate in Section 5 a wide class of processes for which the result is valid.

Instead of considering V_{ψ}^{*} directly we consider V_{ψ}^{+} , the limiting strong ψ -variation on [0, 1] defined by

(2)
$$V_{\psi}^{+}(f; 0, t) = \lim_{\delta \to 0} \sup_{\sigma(\pi) < \delta} \sum_{t, i \in \pi} \psi(|f(t_i) - f(t_{i-1})|),$$

where $\sigma(\pi) = \max(t_i - t_{i-1})$, the mesh of the dissection π . Since our sample paths X(t) are bounded almost surely, it is clear that $V_{\psi}^+(X; 0, t)$ is finite a.s. if and only if $V_{\psi}^*(X; 0, t)$ is finite a.s. One of us [14] showed that when $\psi(s) = s^2/2 \log \log s^{-1}$ and X(s) is Brownian motion, then $V_{\psi}^*(X; 0, t) = t$ almost surely so that, in this case, there is a "correct" function ψ for measuring the

Received August 11, 1972. Revisions received January 12, 1973. This work was partially supported by the National Science Foundation.