THE CONTAINING FRÉCHET SPACE FOR THE CLASS N+

NIRO YANAGIHARA

1. Introduction. Let D be the unit disk $\{|z| < 1\}$. A holomorphic function f(z) in D is said to belong to the class N of functions of bounded characteristic if

(1.1)
$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta = O(1) \text{ as } r \to 1.$$

A function $f(z) \in N$ is factorized as [3; 24]

$$f(z) = B(z; f)(S_1(z; f)/S_2(z; f))\Phi(z; f),$$

where B(z; f) is the Blaschke product with respect to zero points of f(z), $S_k(z; f)$, k = 1, 2, are the singular inner functions with no common factor, and $\Phi(z; f)$ is an outer function for the class N, i.e.,

(1.3)
$$S_{k}(z;f) = \exp \left[-\int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu_{f}^{k}(t) \right]$$

with positive singular measures $d\mu_f^k$, k=1, 2, and

(1.4)
$$\Phi(z; f) = e^{i\gamma} \exp \left[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log \psi_{f}(t) dt \right]$$

with a real constant γ and a summable function $\log \psi_f(t)$. Then $\lim_{r\to 1} |f(re^{it})| = \psi_f(t)$ holds for almost every $t \in [0, 2\pi)$.

A function f(z) ε N is said to belong to the class N^+ if $S_2(z; f) \equiv 1$ [3; 25]. We have for 0 [3; 26]

$$(1.5) H^q \subset H^p \subset N^+ \subset N.$$

We have shown [9; Theorem 1] that the class N^+ forms an F-space in the sense of Banach [2; 51] with the distance function

(1.6)
$$\rho(f, g) = \frac{1}{2\pi} \int_0^{2\pi} \log \left(1 + |f(e^{i\theta}) - g(e^{i\theta})|\right) d\theta$$

for f, $g \in N^+$.

The space N^+ with this metric (1.6) is not locally convex and is not locally bounded [9; corollary to Theorem 2].

For $0 , <math>H^p$ also becomes an F-space, in the sense of Banach, which is not locally convex but is locally bounded, and Duren, Romberg, and Shields [4]

Received May 24, 1972. Revisions received November 15, 1972.