FACTORIZATION OF IRREDUCIBLE POLYNOMIALS OVER A FINITE FIELD WITH THE SUBSTITUTION $x^{pr} - x$ FOR x

ANDREW F. LONG, JR.

1. Introduction. Let GF(q) denote the finite field of order $q = p^n$, where p is an arbitrary prime and $n \ge 1$. Let Q(x) denote an irreducible polynomial of degree s over GF(q). For convenience Q(x) is assumed monic throughout the paper.

It is well known [3; 34] that if Q(x) is irreducible of degree s over GF(q), then $Q(x^{\nu} - x)$ is also irreducible over GF(q) if the coefficient β of $x^{\nu-1}$ in Q(x) satisfies

$$(1.1) \sum_{i=0}^{n-1} \beta^{p^i} \neq 0.$$

However, if the sum in (1.1) is equal to zero, $Q(x^{\nu} - x)$ is the product of p irreducible factors each of degree s over GF(q). The purpose of the present paper is to describe the irreducible factors of $Q(x^{\nu'} - x)$ over GF(q) for an arbitrary positive integer r. Results are known when n|r [4], [5], and we show that [5; Theorems 5.3 and 5.4] are special cases of the results we obtain here.

The principal results of this present paper are contained in the following two theorems from Section 5.

Let

$$N(k, q) = \sum_{i,j=k} \mu(i)q^{i},$$

where μ is the Möbius function, and let

$$\rho_{\delta,d}(x) = \sum_{i=0}^{\delta-1} x^{p^{di}}.$$

THEOREM I. Let Q(x) be irreducible of degree s over GF(q). Let (r, ns) = d, and let $ns = d\delta$ and r = dr'. If $Q(x) \mid \rho_{\delta,d}(x)$, then $Q(x^{p^r} - x)$ is the product over GF(q) of irreducibles of degree st where t divides r'. For each t dividing r' the number of irreducibles of degree st is

$$\sum_{\substack{v \mid d \\ (t,d/v)=1}} N(vt, p)/t.$$

THEOREM II. Let Q(x) be irreducible of degree s over GF(q). Let (r, ns) = d, and let $ns = d\delta$ and r = dr'. Let $r' = p^k l$, (p, l) = 1 and $k \ge 0$. Let $D = p^k d$. If $Q(x) \not \mid \rho_{\delta,d}(x)$, then $Q(x^{p^r} - x)$ is the product over GF(q) of irreducibles of

Received September 5, 1972.