SOME SIMULTANEOUS EQUATIONS IN MATRICES

J. L. BRENNER

Let A_1 , A_2 , A_3 be square matrices of dimension $r_1 \times r_1$, $r_2 \times r_2$, $r_3 \times r_3$ respectively. Necessary and sufficient conditions for the existence of X_1 , X_2 , X_3 , satisfying $A_1 = X_1X_2X_3$, $A_2 = X_2X_3X_1$, $A_3 = X_3X_1X_2$, are (the Flanders conditions) that the elementary divisors of A_i corresponding to nonzero proper values be the same and that the elementary divisors corresponding to the proper value 0 deviate in degree by at most one unit. For r > 3 conditions for the solvability of $A_i = (\prod_{i=1}^r X_i)(\prod_{i=1}^{r-1} X_i)$ are more complicated; an extra condition on the degrees of the elementary divisors corresponding to 0 is involved.

1. Introduction. This article is a continuation of [2] and is a complement to Flanders' article [3]. See also [1], [4], [5]. The coordinate-free background is the following. Let U_i be r finite-dimensional vector spaces over the complex numbers, i = 1(1)r; let A_i be a given linear transformation of U_i into itself. Do there exist r linear transformations X_i , where X_i maps U_i into U_{i+1} (and $U_{r+1} \equiv U_1$), such that all the relations

$$A_{1} = X_{1}X_{2} \cdots X_{r}$$

$$A_{2} = X_{2} \cdots X_{r}X_{1}$$

$$\vdots$$

$$A_{i} = X_{i} \cdots X_{r}X_{1} \cdots X_{i-1}$$

$$\vdots$$

$$A_{r} = X_{r}X_{1} \cdots X_{r-1}$$

hold? If U_i are all identical and A_i are all invertible (equivalent to nonsingular), Equations (1.01) are solvable if and only if A_i are similar [2]. For r=2 the problem was completely solved by H. Flanders. Necessary and sufficient conditions for solvability of $A_1 = X_1X_2$, $A_2 = X_2X_1$ are (i) A_1 , A_2 have the same nonzero proper values; (ii) the elementary divisors of A_1 , A_2 corresponding to every nonzero proper value are the same; (iii) if the degrees of the elementary divisors corresponding to the proper value 0 for A_1 are $m_1 \geq m_2 \geq \cdots$ and for A_2 are $n_1 \geq n_2 \geq \cdots$, then for every ν , $|m_{\nu} - n_{\nu}| \leq 1$; and if for some ν there is no n_{ν} $[m_{\nu}]$, then m_{ν} $[n_{\nu}]$ is 1. Permissible sets are for example (3, 2, 1, 1) for the m_{ν} , (3, 3) for the n_{ν} . In this article, conditions (i), (ii), (iii) are called the Flanders conditions.

Received July 19, 1972. The author was partially supported by NSF GP 32527.