OPERATIONS IN MOD P CONNECTIVE K THEORY AND THE J HOMOMORPHISM

LARRY SMITH

Let bu denote the spectrum representing connective K theory and let \mathbb{Z}_p denote both the cyclic group of prime order p and the corresponding co-Moore spectrum. It is known [3] that

bu
$$\wedge Z_p \simeq k_p \vee \sum^2 k_p \vee \cdots \vee \sum^{2p-2} k_p$$

for a spectrum \mathbf{k}_{p} . The spectrum \mathbf{k}_{p} is somewhat easier to handle than $\mathbf{bu} \wedge \mathbf{Z}_{p}$ and it retains almost all the homotopy information of $\mathbf{bu} \wedge \mathbf{Z}_{p}$. In [3] a beginning is made in studying the ring of stable cohomology operations of the cohomology theory $k_{p}^{*}($). It is shown that there is an operation

$$P_1: k_p^*(\) \to k_p^{*+2(p-1)}(\)$$

which makes the following diagram commute

$$k_{p}^{*}(X) \xrightarrow{P_{1}} k_{p}^{*+2(p-1)}(X)$$

$$\downarrow \eta_{p} \qquad \qquad \downarrow \eta_{p}$$

$$H^{*}(X; \mathbf{Z}_{p}) \xrightarrow{P_{1}} H^{*+2(p-1)}(X; \mathbf{Z}_{p})$$

for all reasonable spaces X, where η_p is induced by the natural augmentation to the Eilenberg-MacLane spectrum $\eta_p: \mathbf{k}_p \to \mathbf{K}(\mathbf{Z}_p)$ and P^1 denotes the first Steenrod reduced p-th power mod p. (Remember for p=2, $P^1=Sq^2$.) It is well known that for p odd, P^1 detects the element $\alpha_1 \in \pi_{2p-3}^*$ of the stable 2p-3 stem that generates the p-primary component of the image of the J homomorphism, and in fact [4], [5] it is known that this is all the homotopy that is detected by \mathbf{Z}_p -primary cohomology operations. The objective of the present note is to explore the analogous situation for the cohomology theory $k_p^*(\cdot)$ with particular reference to the J homomorphism and the operation P_1 . Our main result may be stated in broad terms as follows.

THEOREM. Let p be an odd prime. Then the operation P_1 detects the generator of the p component of the image of the J homomorphism in $\pi_{2t(p-1)-1}^s$ for all t > 0. For p = 2 the operation P_1 detects the generator of the 2 component of the image of the J homomorphism in π_{3t-1}^s and the μ family in π_{3t+1}^s for all t > 0.

For example, when p=3, P_1 detects the elements α_1 , α_2 , α_3' , α_4 , etc. of the 3, 7, 11 and 15 stems but fails to detect the element $\alpha_3=3\alpha_3'$ ϵ π_{11}^{\bullet} .

Received April 18, 1972. The paper was written while the author was at the University of Virginia.