ON THE NUMBER OF DISTINGUISHED REPRESENTATIONS OF A GROUP ELEMENT

DAVID JACOBSON AND KENNETH S. WILLIAMS

1. Introduction. Let Δ denote a property which an element of a group may possess. We are interested in the number of representations of an element in a finite group as a product of r elements possessing Δ .

More generally, let D be a nonempty subset of a finite group G and denote by $N_r^{D}(a) = N_r(a)$ the number of solutions of the equation

(1)
$$x_1 \cdots x_r = a$$

where a is an element of G and x_1, \dots, x_r belong to D. Of course, if a is not in the subgroup generated by D, then $N_r(a) = 0$ for all r.

In Proposition 1 we note that the evaluation of $N_r^p(a)$ reduces to the corresponding question for a certain quotient group of G.

If D itself is a subgroup of G, then trivially $N_r(a) = |D|^{r-1}$ for a in D.

For arbitrary D the calculation of $N_r^D(a)$ seems quite difficult. One of our main results is the explicit determination in Theorem 2 of $N_r^D(a)$ when $G \ D$, the complement of D in G, is a subgroup of G.

As an application of Theorem 2 we obtain in Corollary 5 the number of representations of a given element in an abelian group G as a product of r elements of maximal order in G. In particular, for G cyclic this number agrees with a formula derived by Rearick [3] and is essentially equivalent to an earlier formula of Dixon [1].

In §4 analogous questions for rings are considered.

2. Main results. For D a nonempty subset of G let J(D) = J denote the largest normal subgroup of G such that $xJ \subseteq D$ for all x in D. We say that G is *D*-reduced if $J = \{1\}$. If $a \in G$, let \overline{a} denote aJ in $\overline{G} = G/J$.

PROPOSITION 1. If
$$\bar{D} = \{\bar{x} \mid x \in D\}$$
, then G is D-reduced and
(2) $N_r^D(a) = |J|^{r-1} N_r^{\bar{D}}(\bar{a}).$

Proof. If $\overline{K} = K/J$ is the largest normal subgroup of \overline{G} such that $\overline{x}\overline{K} \subseteq \overline{D}$ for all \overline{x} in \overline{D} , then clearly $xK \subseteq D$ for all x in D. However, K is a normal subgroup of G and thus K = J, which establishes that \overline{G} is \overline{D} -reduced.

To prove (2) we require the following lemma.

LEMMA. Let G be a finite group and J a normal subgroup of G. If x_1, \dots, x_r belong to G, then the number of r-tuples (y_1, \dots, y_r) satisfying $x_1 \dots x_r = y_1 \dots y_r$ and $y_i \in x_i J$ for $i = 1, \dots, r$ is equal to $|J|^{r-1}$.

Received March 13, 1972.