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Introduction. A metric topological space will be referred to as a space and
a map will be a continuous function from one space to another space. By a
continuum we will mean a compact connected space and a one-dimensional
continuum will be a curve. A graph will be a one-dimensional polyhedron while
a tree is a simply connected graph. Denote the standard n-sphere by S and
the closed unit interval by I. A curve A is an arc if and only if there exists a
homeomorphism ] from I onto A. A curve X is tree-like (arc-like) provided
if e > 0, there exists a tree (an arc) T and a mp :X --. T such that if T,
then diam (]-’(t)) < e.

If g:X --. Y is a mp such that g is homotopic to constant map, then we will
say g 0. Otherwise, g non 0 will mean that g is not homotopic to a constant
map. The condition that a map ]:X -- Y is irreducible non-homotopic to
a constant (] irr non 0) means that ] non 0, but if B is a proper closed
subset of X, then ] B 0.

If X is a continuum and ]:X - Y is a map, then ] is confluent provided that
whenever B is a subcontinuum of Y and F is component of ]-I[B] then ][F] B.
The following question ws asked by Lelek [10]. Suppose Y is a curve such

that Y is the image of a tree-like curve under a confluent map. Is Y tree-like?
Both the question nd the ffirmative answer to it that is presented in this
paper are motiwted by the next two theorems.
The first theorem is by Cse nd Chamberlin [3] and provides a useful char-

acterization of tree-like curves.

THEOREM 1. I] Y is a curve, then Y is tree-like i] and only i] whenever g is
a map o] Y onto a finite linear graph then g O.

The other theorem is due to Lelek [9] and is stated in the form that we will
use it.

TEOaEM 2. I] ]:X ----> Y is a confluent map o] a continuum onto a continuum
and g: Y ----> S is a map such that g o ] O, then g O.

Let X be a continuum. Then X is decomposable provided there exists a
pair of proper subcontinua of X whose union is X and is indecomposable if it
is not decomposable. Also, X is hereditarily decomposable if each subcontinuum
of X is decomposable.
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