FRÉCHET DISTANCE AND THE UNIFORM CONVERGENCE OF QUASICONFORMAL MAPPINGS

BRUCE PALKA

1. Introduction. It is the purpose of this paper to generalize a classical theorem of Radó [7] concerning the uniform convergence of conformal mappings of the unit disk in the plane to a theorem on the uniform convergence of quasiconformal mappings in n-space. The question of uniform convergence of conformal and quasiconformal maps in the plane has been studied from various points of view by Radó, Courant [1], Markouchevitch [4], Gaier [2] and Wilson [9], and many of their results remain valid in n-space. (See [6].) Our specific interest here is the result of Radó.

2. Notation and terminology. We denote by \mathbb{R}^n the n-dimensional Euclidean space and by \mathbb{R}_n, for $n \geq 2$, its one point compactification, $\mathbb{R}_n \cup \{\infty\}$. If $x \in \mathbb{R}^n$, x_i, $i = 1, 2, \ldots, n$, will be the i-th coordinate of x with respect to a fixed orthonormal basis $\{e_1, \ldots, e_n\}$. Stereographic projection from the n-sphere induces a natural metric q on \mathbb{R}^n, the chordal metric, and all topological considerations in this paper refer to \mathbb{R}^n and the topology induced on it by q. For a subset A of \mathbb{R}^n we denote by \overline{A}, int A, $C(A)$, ∂A and $q(A)$ the closure, interior, complement, boundary and chordal diameter of A, respectively. If A and B are subsets of \mathbb{R}^n, $A \setminus B$ is the difference set $A \cap C(B)$ and $q(A, B)$ denotes the chordal distance between A and B. If $x \in \mathbb{R}^n$ and $r > 0$, $B(x, r)$ is the open (Euclidean) ball of radius r with center at x. A domain in \mathbb{R}^n is a nonempty, open, connected subset of \mathbb{R}^n. By a continuum is meant a closed, connected set containing at least two points.

By a path in \mathbb{R}^n we understand a continuous mapping of a closed interval into \mathbb{R}^n. If E, F and G are subsets of \mathbb{R}^n, the notation $\Delta(E, F; G)$ is used for the family of all paths joining E and F in G, i.e., a path $\gamma:[a, b] \to \mathbb{R}^n$ belongs to $\Delta(E, F; G)$ if and only if one endpoint belongs to E, one endpoint belongs to F and $\gamma(t) \in G$ for $a < t < b$. If Γ is a family of paths in \mathbb{R}^n, $F(\Gamma)$ will be the set of all nonnegative, extended real valued, Borel measurable functions ρ on \mathbb{R}^n such that

$$\int_{\gamma} \rho \, ds \geq 1$$

for each rectifiable $\gamma \in \Gamma$. The n-modulus of Γ, written $M(\Gamma)$, is defined by

$$M(\Gamma) = \inf_{F(\Gamma)} \int_{\mathbb{R}^n} \rho^n \, dx$$

Received January 28, 1972. This paper is excerpted from the author's doctoral dissertation at the University of Michigan where he was partially supported by an NDEA Title IV Traineeship.