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1. Introduction. Let L be a Riesz space and 0 a locally convex Hausdorff
topology on L. Then 0 is called a locally convex Riesz topology if there is a
local base at 0 for {3 consisting of solid sets. In this case the (topological)
dual space (L, {3)* is an ideal in the order dual L- and (L, 0)* distinguishes
points in L.

Let L be a Riesz space and I an ideal in L~ which distinguishes points in L.
Let be the family of all order intervals in I. Then {A"A } is a local base
at 0 for a locally convex Riesz topology la[ (L, I) on L and (L, la[ (L, I))* I.
Let $ be the family of all a(I, L)-compact solid absolutely convex sets in I.
Then {S "S $} is a local base at 0 for a locally convex Riesz topology Iv[ (L, I)
and (L, [r[ (L, I))* .I. Indeed, the following analogue to the Mackey-Arens
Theorem is well-known. If {3 is a locally convex Riesz topology on L, then
(L, 0)* I if and only if Ia! (L, I)

_
0 Jr] (L, I).

Again suppose I is an ideal in L- such that I distinguishes points in L. A.L.
Peressini [6] has shown that the weak topology a(L, I) is a locally convex
Riesz topology (i.e., a(L, I) [al (L, I)) if and only if order intervals in I are
contained in finite dimensional subspaces of I. A more complex problem is to
determine when the Mackey topology r(L, I) is a locally convex Riesz topology
(i.e., when r(L, I) [rl (L, I)). It is well-known that r(L, L-) is a locally
convex Riesz topology whenever L distinguishes points in L. A more profound
result is that if L is Dedekind complete and if the band L: of normal integrals
in L- distinguishes points in L, then r(L, L:) is a locally convex Riesz topology.
This was shown in 1960 by I. Amemiya [1] and again in 1967 by D. H. Fremlin [2].

If I distinguishes points in L, then a necessary and sufficient condition that
r(L, I) be a locally convex Riesz topology is that every a(I, L)-compact abso-
lutely convex subset of I be contained in a solid a(I, L)-compact absolutely
convex subset of I (Lemma 2.1). Fremlin shows that if L is Dedekind complete
and L: distinguishes points in L, then every a(L:, L)-compact set is contained
in a solid (L L)-compact absolutely convex set. In 3 we show that the
condition that L be Dedekind complete in Fremlin’s Theorem can be weakened
to either that L have the projection property (Theorem 3.5) or that L be Dede-
kind a-complete (Theorem 3.8). However, we give examples in $4 to show
that if L is a Riesz space such that L: distinguishes points in L, then the principal
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