1. Introduction. Bang [1] in 1895 found that the coefficients of the monic cyclotomic polynomial \(F_{pqr} \), where \(p < q < r \) are odd primes, are not greater than \(p - 1 \) in absolute value. No better upper bound has heretofore appeared. However, the author in [3] and Bloom in [4] simultaneously established \((p + 1)/2 \) as the upper bound in the special case where \(q \) and/or \(r \) is congruent to \(\pm 1 \) modulo \(p \). Bloom also proved that, for a coefficient of value \(p - 1 \) to appear, a necessary condition is: \(mqr + hq + r \) is not divisible by \(p \), \(h = \pm 1 \), \(m \) an integer such that \(|m| \leq \min(3, (p - 3)/2) \). It is the purpose of this paper to show that \(p/c \) when \(p = 4k + 1 \) or \(p - (k + 1) \) when \(p = 4k + 3 \) is a better general bound on these coefficients.

2. Preliminary notions. Let

\[
F_{pqr}(x) = \sum_{n=0}^{\varphi(pqr)/2} c_n x^n.
\]

Then, from [2],

\[
c_n = \sum (-1)^{i_1 + i_2},
\]

where the summation (1) is over all partitions of \(n \) such that \(0 \leq n \leq \varphi(pqr) \), \(\varphi(m) \) is the Euler \(\varphi \)-function and

\[
n = a + \alpha pq \rightarrow \beta pr + \gamma qr + \delta_1 q + \delta_2 r,
\]

\(\delta_1, \delta_2 = 0, 1; 0 \leq a < p; 0 \leq \alpha < r; 0 \leq \beta < q; 0 \leq \gamma < p - 1. \)

Then \(c_n = 0 \) when \(n \) has no partition of the form (2). Otherwise the value of \(c_n \) will be determined by the number of such partitions of \(n \) and by the values of \(\delta_1 \) and \(\delta_2 \) in these partitions. Since the cyclotomic polynomial is symmetric we examine \(c_n \) only for \(n \leq [\varphi(pqr)]/2 \). With this restriction on \(n \), \(\gamma \) in (2) is not greater than \((p - 3)/2 \). The possible values of the \(\delta \)'s suggest the following notation for partitions of \(n \) in the form (2) [3]:

\[
\begin{align*}
\delta_1 = \delta_2 &= 0, & P_{1i} &= a_{1i} + a_{1i}pq + \beta_i pr + iqr \\
\delta_1 = \delta_2 &= 1, & P_{2i} &= a_{2i} + a_{2i}pq + \beta_2 pr + iqr + q + r \\
\delta_1 &= 0, \delta_2 &= 0, & P_{3i} &= a_{3i} + a_{3i}pq + \beta_3 pr + iqr + q \\
\delta_1 &= 0, \delta_2 &= 1, & P_{4i} &= a_{4i} + a_{4i}pq + \beta_4 pr + iqr + r
\end{align*}
\]

\(i = 0, 1, \cdots, (p - 3)/2. \)

Received November 7, 1969.