FINITE PRODUCTS OF WALLMAN SPACES

By Frank Kost

Introduction. In 1938 H. Wallman [5] associated with a T_1 -space X a compact T_1 -space Y which contains a dense copy of X. In this construction the points of Y are the ultrafilters from the lattice of closed subsets of X. O. Frink [2] characterized complete regularity in T₁-spaces as those spaces that possess a normal base for their closed sets. In the proof of sufficiency he constructs a Hausdorff compactification $\omega(Z)$ of X by considering the ultrafilters from the normal base Z. As this construction was utilized by Wallman, Frink calls a compactification obtained in this way a Wallman-type compactification, or a Wallman space. Frink then offered the conjecture that every compactification is Wallman-type. This question is unsettled. Some partial solutions are known. E. F. Steiner [4] has given sufficient conditions on a compact space in order that it be a Wallman-type compactification of each of its dense subspaces. From the work of R. M. Brooks [1] we have that all compactifications of discrete space obtained by "adding" no more than a countable number of points are Wallman-type. So is the one-point compactification of a locally compact space. In the sequel we offer a partial solution to the conjecture by showing that finite products of Wallman spaces are again Wallman spaces.

DEFINITIONS. Call Y a compactification of the space X if Y is a compact Hausdorff space and X is dense in Y (or a copy of X is dense in Y). A family $\mathfrak F$ of closed sets of a space X is said to be

- i) a base for the closed sets if for $x \notin A$, A closed there is $F \in \mathcal{F}$ such that $x \notin F$ and $A \subset F$.
- ii) ring of sets if F is closed under formation of finite unions and intersections.
- iii) disjunctive if given $x \notin A$, A closed there is $F \in \mathcal{F}$ with $x \in F$ and $F \cap A = \emptyset$.
- iv) a normal family if given F_1 , $F_2 \in \mathfrak{F}$, $F_1 \cap F_2 = \emptyset$, there is H_1 , $H_2 \in \mathfrak{F}$ such that $F_1 \subset X \backslash H_1$, $F_2 \subset X \backslash H_2$ and $(X \backslash H_1) \cap (X \backslash H_2) = \emptyset$. If \mathfrak{F} has properties $i \to iv$ above, \mathfrak{F} is called a normal base for the closed sets of X. The collection of all closed sets of a T_1 -space satisfies $i \to iii$ and is a normal base if and only if X is a normal space. For X a discrete space we have $\{F \subset X : F \text{ finite or } X \backslash F \text{ finite}\}$ as a normal base. Also the collection of zero-sets of continuous real-valued functions on X is a normal base in case X is completely regular- T_1 (T_{34}).

For \mathfrak{F} a ring of closed sets of X that is a disjunctive base for the closed sets of X we set $\omega(\mathfrak{F}) \equiv \{\alpha \colon \alpha \subset \mathfrak{F}, \alpha \text{ an ultrafilter}\}$. The ultrafilters from \mathfrak{F} with

Received October 13, 1969. This paper is a part of the doctoral dissertation written under the direction of Professor Orrin Frink at the Pennsylvania State University.